Автотрансформатор арб 250 лотос 1 схема

Автотрансформатор арб 250 лотос 1 схема

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(500000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

Новые возможности старого автотрансформатора

Регулировочный бытовой автотрансформатор АРБ-250 я приобрел в незапамятные, как говорится, времена, когда он стоил всего 16 целковых. Сразу же, не заглядывая в инструкцию по эксплуатации и не подключая к прибору никакой нагрузки, «врубил» свою покупку в электросеть.

Итогом столь скоропалительных действий стали сгоревший по причине неверной установки регулировочного диска предохранитель и пошедшее на спад настроение. Причем последнему в немалой степени способствовало выясненное в ходе повторного (правильного) включения обстоятельство: реально допустимые пределы регулировки у АРБ-250 далеки от того, что ожидались.

Автотрансформатор оказался как бы не у дел. Появление же современной радио- и телеаппаратуры (со встроенными стабилизаторами напряжения) и вовсе грозило ему отставкой. Но тут грянул «электроламповый дефицит». Стремясь максимально облегчить режим эксплуатации своей 75-ваттной настольной лампы и продлить срок ее службы, я не поддался соблазну спаять нечто ультрасовременное, тиристорно-симисторное. Вспомнив об АРБ-250, стал думать, как приспособить этот автотрансформатор.

Получившаяся принципиальная электрическая схема приведена на рисунке. А для сравнения рядом дана прежняя. Сразу бросается в глаза главное отличие нового схемного решения от старого: включение автотрансформатора как бы задом наперед, с двумя вариантами коммутации «общего» провода вводом еще одного элемента — тумблера SA1.


Старый АРБ-250 с новыми возможностями: 1 — автотрансформатор в стандартном корпусе, доработанный; 2 — вольтметр на светодиодной матрице, штатный; 3 диск с расширенными пределами изменяемых параметров, регулировочный; 4 — шнур сетевой


Принципиальные электрические схемы (нажмите для увеличения): а — исходная; б — модифицированная

Вся работа по переделке АРБ-250 занимает (выверил лично) не более 10 минут. В основном это затраты на установку перекидного переключателя ТВ2-1 и изоляцию прежнего, шедшего на нагрузку, отвода. Но какой получился результат! Подлючать к такому трансформатору-универсалу теперь можно практически любой бытовой прибор — потребитель переменного тока с напряжением электропитания чуть ли не от «нуля» и до 250 В. Неплохо, в частности, применять модифицированный АРБ-250 для получения «мягкого», «приглушенного», а то и плавно изменяемого (как в кинотеатре) света у бра, настольной лампы или торшера. Когда возникает необходимость, я использую автотрансформатор в качестве источника питания для моего самодельного 40-вольтного паяльника и другой «нестандартной» нагрузки.

Сделайте себе аналогичное устройство на базе АРБ-250 — не пожалеете!

Смотрите другие статьи раздела Строителю, домашнему мастеру.

Читайте и пишите полезные комментарии к этой статье.

Сергей
Ты конструктор: чё ты туфту гонишь. Если смотреть на схему твоего ( ноу-хау ), то в первичке большое число витков, чем во вторичке. Откуда могут взяться 250 вольт на вторичке, если в сети 200, и количество витков больше чем во вторичке. ты что переучился? Да там всего два конца перепаять, и получается ЛАТР с регулировкой от нуля до 250 вольт.

Алексей
Напряжение подтверждаю. 1 положение 130-260 вольт.2 положение 0,2-97 (зависит от сети). Правда схема чуть не точно нарисована

Игорь
Правда! Зачем схема чуть не точно нарисована?

Источник

НОВЫЕ ВОЗМОЖНОСТИ СТАРОГО ТРАНСФОРМАТОРА

Регулировочный бытовой автотрансформатор АРБ-250 я приобрел в незапамятные, как говорится, времена, когда он стоил всего 16 целковых. Сразу же, не заглядывая в инструкцию по эксплуатации и не подключая к прибору никакой нагрузки, «врубил» свою покупку в электросеть…

Итогом столь скоропалительных действий стали сгоревший по причине неверной установки регулировочного диска предохранитель и пошедшее на спад настроение. Причем последнему в немалой степени способствовало выясненное в ходе повторного (правильного) включения обстоятельство: реально допустимые пределы регулировки у АРБ-250 далеки от того, что ожидались.

Автотрансформатор оказался как бы не у дел. Появление же современной радио- и телеаппаратуры (со встроенными стабилизаторами напряжения) и вовсе грозило ему отставкой. Но тут грянул «электроламповый дефицит». Стремясь максимально облегчить режим эксплуатации своей 75-ваттной настольной лампы и продлить срок ее службы, я не поддался соблазну спаять нечто ультрасовременное, тиристорно-симисторное. Вспомнив об АРБ-250, стал думать, как приспособить этот автотрансформатор.

Получившаяся принципиальная электрическая схема приведена на рисунке. А для сравнения рядом дана прежняя. Сразу бросается в глаза главное отличие нового схемного решения от старого: включение автотрансформатора как бы задом наперед, с двумя вариантами коммутации «общего» провода вводом еще одного элемента — тумблера SA1.

Старый АРБ-250 с новыми возможностями:

1 — автотрансформатор в стандартном корпусе, доработанный; 2 — вольтметр на светодиодной матрице, штатный; 3 диск с расширенными пределами изменяемых параметров, регулировочный; 4 — шнур сетевой.

Принципиальные электрические схемы:

а — исходная; б — модифицированная.

Вся работа по переделке АРБ-250 занимает (выверил лично) не более 10 минут. В основном это затраты на установку перекидного переключателя ТВ2-1 и изоляцию прежнего, шедшего на нагрузку, отвода. Но какой получился результат! Подлючать к такому трансформатору-универсалу теперь можно практически любой бытовой прибор — потребитель переменного тока с напряжением электропитания чуть ли не от «нуля» и до 250 В. Неплохо, в частности, применять модифицированный АРБ-250 для получения «мягкого», «приглушенного», а то и плавно изменяемого (как в кинотеатре) света у бра, настольной лампы или торшера. Когда возникает необходимость, я использую автотрансформатор в качестве источника питания для моего самодельного 40-вольтного паяльника и другой «нестандартной» нагрузки.

Сделайте себе аналогичное устройство на базе АРБ-250 — не пожалеете!

Источник

Автотрансформатор АРБ-250, ЛАТР

Переделываем автотрансформатор АРБ-250 в Лабораторный Авто Трансформатор Регулировочный(ЛАТР)

Данный трансформатор предназначен для поддержания на нагрузке номинального напряжения 220 вольт, с поддержкой отклонения напряжения в диапазоне от 150 до 250 вольт, его номинальная мощность около 200 Ватт.

Внимание! Автотрансформатор не имеет гальванической развязки от сети и может привести к поражению электрическим током!

Имеет линейный газоразрядный люминесцентный индикатор напряжения Ц215 с погрешностью в 4%, в нем используется индикатор тлеющего разряда ИН-9, подключенный через резистор и однополупериодный выпрямитель(через один диод):

С его исходной схемой включения регулировочного автотрансформатора не выйдет, для изготовления регулировочного автотрансформатора, необходимо «перевернуть» подключение для возможности регулировки выходного напряжения(выход сделать входом и соответственно вход сделать выходом).

Его оригинальное подключение:

Для переделки, требуется перепаять провода таким образом(здесь индикатор напряжения временно отпаян, чтобы избежать путаницы с проводами):

При таком способе подключения выходное напряжение можно регулировать в пределах от

130 до 260 вольт(Внимание! Можно испортить подключенное устройство высоким напряжением!).

Для регулировки напряжения от 0 до

100 вольт необходимо перепаять провода — белый на вход, а средний зеленый на выход, вместо белого, либо использовать специальную кнопку, которая перекидывает данные провода наоборот.

Источник

Источники питания

Автотрансформатор регулировочный бытовой «АРБ-250» выпускался Московским электрозаводом имени Куйбышева (Раменский филиал) с I-кв 1972 года.

Автотрансформатор »АРБ-250» предназначен для ручного поддержания напряжения в 220 вольт при изменении сетевого напряжения в пределах 150-250 В. Мощность в нагрузке не более 250 Вт.

  1. Инструкция по эксплуатации на автотрансформатор — «АРБ-250».
  2. Паспорт на — «АРБ-250» (Юбилейный). К какому юбилею приурочен выпуск автотрансформатора инструкция которого приведена справа выяснить пока не удалось

Автотрансформатор «АРБ-400»

Автотрансформатор регулировочный — «АРБ-400» выпускался Производственным объединением «Эльво» с 1989 год.

Автотрансформатор служит для относительного поддержания стабильного напряжения в 220 вольт при медленных изменении напряжения электрической сети от 150 до 250 вольт, при мощности в нагрузке
до 400 ватт. Индикатором напряжения 220 вольт являются светодиоды, которые перестают светиться. Если напряжение в сети меньше нормы загорается левый светодиод, больше — правый. Автотрансформатор можно использовать для питания любой элетротехнической и радиотелевизионной аппаратуры.

Блок питания «Кварц БП-1»

Блок питания «Кварц БП-1» выпускал Кыштымский радиозавод с 1978 года.

Блок питания »Кварц БП-1» предназначен для питания транзисторных радиоприёмников типа »Кварц» или аналогичных, рассчитанных на питание от источника постоянного тока на одно из питающих напряжений 9, 6 или 4,5 вольт мощностью до 0,6 ватта и имеющих контактное устройство для подключения элементов питания типа »Крона» или гнездо для подключения внешнего источника питания в стационарных условиях. Питается блок питания от сети переменного тока напряжением 220 В. БП с выходным напряжением 9 вольт выполнены с колодкой питания типа »Крона», с напряжением 4,5 и 6 В со штеккером типа »ШС». Номинальный ток в нагрузке 9 В/30 мА. 6 В/45 мА. 9 В/60 мА. Максимальный ток: 100/100 и 70 мА соответственно. Монтаж элементов — печатный, корпус БП из пластмассы.

  1. Электрическая схема блока питания Кварц БП-1.

Блок питания «Россия» БП 303-1

Блок питания «Россия» БП 303-1 выпускался Челябинским радиозаводом «Полёт» с 1996 года.

Блок питания «Россия» БП 303-1 предназначен для питания через него от сети переменного тока аппаратуры, потребляющей при напряжении 6 В ток не более 0,12 А.

  1. Инструкция по эксплуатации

Блок питания «Электроника Д2-10М»

Блок питания «Электроника Д2-10М» выпускался Николаевски трансформаторным заводом с 1988 г.

Блок питания »Электроника Д2-10М» предназначен для питания арифметических электронных клавишных вычислительных машин (калькуляторов). Номинальное выходное напряжение 5,4 В. Максимальный ток в нагрузке — 90 мА. Габариты блока питания — 93х48х36 мм. Его масса 180 гр.

Блок питания БПК-0,8-78У3

Блок питания БПК-0,8-78У3 предназначен для питания звуковых киноустановок типа КН и «Украина» от однофазной сети переменного тока, при номинальном напряжении сети 220В и частоте 50 или 60 Гц.

Блок питания обеспечивает на выходе переменные токи напряжением 220; 34,5; 4В или 220; 31,5; 4В, а также постоянный ток напряжением 5,5В для питания звукочитающей лампы.

Блоки питания «БП-9/5», «БП-12/5», «БП-12/10»

Блоки питания «БП-9/5», «БП-12/5», «БП-12/10». Выпуск с 1970 года.

Унифицированные стабилизированные блоки питания предназначены для питания постоянным стабилизированным напряжением 9 или 12 В портативных магнитофонов или радиоприёмников. Блоки имеют одинаковую конструкцию и сходную электрическую схему. Отличие только в габаритах силового трансформатора и соответственно габаритах футляров, массе блоков питании и их мощности.

  1. Инструкция по эксплуатации и электрическая схема стабилизированных блоков питания «БП-9/5», «БП12/5».

Зарядное устройство «Электроника ЗУ-04»

Зарядное устройство «Электроника ЗУ-04» выпускало Ставропольское ООО «ДиК» с 1990 года.

Зарядное устройство »Электроника ЗУ-04» предназначе но для зарядки аккумуляторов типоразмера »А-316». За рядка может осуществляться парно, то есть или два аккумулятора или четыре. Ток заряда на каждом из аккумуляторов — 75 мА. Время заряда выбирается в зависимости от заряжаемых аккумуляторов, но не более 12 ч.

Источник питания постоянного тока «Б5-10»

Источник питания постоянного тока «Б5-10» выпускался с 1972 года.

Источник питания постоянного тока »Б5-10» предназначен для питания радиоэлектронных устройств стабилизированным напряжением постоянного тока. Выходное напряжение регулируется ступенчато и плавно от 0 до 300 вольт при токе нагрузки до 0,3 ампера. Подробнее смотрите в кратком техническом описании и инструкции на источник питания.

  1. Инструкция на источник питания

Источник питания постоянного тока «Б5-7»

Источник питания постоянного тока «Б5-7» выпускался 1982 года.

Источник питания »Б5-7» предназначен для питания низковольтной радиоаппаратуры в процессе её настройки или производства. Выходное напряжение прибора ступенчато и плавно регулируется от 0 до 30 вольт при токе нагрузки до 3 ампер. Более подробно о ИП в кратком техническом описании и инструкции источника питания.

  1. Краткое техническое описание и инструкция на БП

Стабилизатор напряжения «Вега-9»

Стабилизатор напряжения «Вега-9» с 1986 года выпускал Таганрогский завод «Прибой» и другие заводы.

Стабилизатор напряжения »Вега-9» (СН-200) предназначен для питания стабилизированным напряжением телевизоров с потребляемой мощностью не выше 200 Вт. Стабилизатор автоматически поддерживает необходимое напряжение для телевизора в условиях, когда напряжение сети понижается или повышается относительно номинального. Стабилизатор обеспечивает нормальную работу телевизору и увеличение срока службы кинескопа и радиоламп. Допустимая выходная мощность стабилизатора: минимальная 100, максимальная 200 Вт. Допустимые колебания входного напряжения 154. 253 В. Стабилизированное напряжение выхода 198. 231 В. КПД стабилизатора 84%. Вес стабилизатора 3,4 кг.

Стабилизатор напряжения «СНБ-200»

Стабилизатор напряжения «СНБ-200» с 1967 года выпускал Завод «СевКавЭлектроприбор».

Стабилизатор напряжения бытовой »СНБ-200» предназначен для питания всех типов телевизоров стабильным напряжением в 220 вольт при потребляемой мощности не более 200 ватт. Выходное стабильное напряжение обеспечивается при колебаниях сетевого напряжения в пределах: 90. 140 и 165. 242 вольт для электрических сетей 127 и 220 вольт. Стабилизированное выходное напряжение при этом составляет 201 В на нижнем пределе и 228 В на верхнем. При снижении мощности в нагрузке до 150 ватт напряжение на нижнем пределе будет 215 В и 223 В на верхнем. Разными заводами страны по такой же конструкции и электрической схеме выпускались стабилизаторы «Эльбрус», «Эдельвейс», Берёзка» и несколько других, объединённых общим типом «СНБ-200».

  1. Инструкция по эксплуатации стабилизатора напряжения «СНБ-200»

Стабилизатор напряжения »Вега-70»

Стабилизатор напряжения »Вега-70» выпускался с I-кв 1972 года.

Стабилизатор напряжения »Вега-70» является модернизацией стабилизатора »Вега-3». Он предназначен для питания стабилизированным напряжением 220 В чёрно-белых телевизоров и другой аппаратуры с потребляемой мощностью до 200 Ватт.

  1. Журнал «Радио» № 7 за 1972 год.

Стабилизатор напряжения УСН-200 «Таврия»

Стабилизатор напряжения УСН-200 «Таврия» с начала 1969 года выпускал Запорожский трансформаторный завод.

Стабилизатор предназначен для питания телевизоров и другой бытовой радиотехнической аппаратуры, потребляющей мощность не более 200 Вт от сети переменного тока напряжением 127 или 220 вольт. Выходное стабилизированное напряжение равно 220 В. Стабилизатор автоматически поддерживает необходимое напряжение и не требует контроля когда напряжение сети понижается или повышается. Рабочий диапазон входных напряжений 0,7. 1,15 % от номинального. Уровень акустического шума 38 дБ. Мощность, потребляемая самим стабилизатором 45 Вт. Габариты стабилизатора 286x122x150 мм. Масса 5,6 кг.

  1. Инструкция по эксплуатации стабилизатора

Стабилизатор напряжения УСН-200 «Таврия»

Стабилизатор напряжения УСН-200 «Таврия» с начала 1969 года выпускал Запорожский трансформаторный завод.

Стабилизатор предназначен для питания телевизоров и другой бытовой радиотехнической аппаратуры, потребляющей мощность не более 200 Вт от сети переменного тока напряжением 127 или 220 вольт. Выходное стабилизированное напряжение равно 220 В. Стабилизатор автоматически поддерживает необходимое напряжение и не требует контроля когда напряжение сети понижается или повышается. Рабочий диапазон входных напряжений 0,7. 1,15 % от номинального. Уровень акустического шума 38 дБ. Мощность, потребляемая самим стабилизатором 45 Вт. Габариты стабилизатора 286x122x150 мм. Масса 5,6 кг.

  1. Инструкция по эксплуатации стабилизатора

Стабилизированный блок питания «А-601»

Стабилизированный блок питания «А-601» выпускался Рижским ЭМЗ с 1990 года.

Стабилизированный блок питания »А-601» обеспечивает ток не менее 200 мА, при выходном напряжении 4.5, 6, 9 и 12 В. Для подключения нагрузки используются зажимы. Сбоку расположен выключатель сети, в разъёме для подключения сетевого шнура имеется предохранитель. Выходное напряжение выставляется переключателем (перемычкой) сзади корпуса, а рядом с выходными зажимами находятся индикатор включения и индикатор перегрузки.

Термоэлектрогенератор ТГК-3

В. Даниель-Бек,
А. Воронин,
Н. Рогинская

До настоящего времени единственным источником электрического тока, пригодным для питания радиоприемников в неэлектрифицированных сельских местностях, служили батареи из гальванических элементов. Однако названные батареи обладают рядом недостатков, основным из которых является то, что из-за саморазряда такие источники тока могут сохраняться лишь ограниченное время и что напряжение на их зажимах при разряде нестабильно (оно снижается в процессе эксплуатации примерно на 50%).

В настоящее время у нас разработаны и осваиваются промышленностью новые источники питания для радиоустройств – термоэлектрогенераторы.

В данной статье дается описание принципа действия и устройства термоэлектрогенератора типа ТГК-3 мощностью 3 вт, предназначенного для питания сельских батарейных радиоприемников «Родина-47», «Родина-52», «Искра», «Таллин Б-2», «Тула» и т. п.

ПРИНЦИП РАБОТЫ ТЕРМОЭЛЕКТРОГЕНЕРАТОРА

Действие термоэлектрогенератора основано на использовании термоэлектричсского эффекта, сущность которого заключается в том, что при нагревании места соединения (спая) двух разных металлов между их свободнымн концами, имеющими более низкую температуру, возникает разность потенциалов, или так называемая термоэлектродвижущая сила (термо-ЭДС). Если замкнуть такой термоэлемент (термопару) на внешнее сопротивление, то по цепи потечет электрический ток (рис. 1). Таким образом, при термоэлектрических явлениях происходит прямое преобразование тепловой энергии в электрическую.

Величина термоэлектродвижущей силы определяется приближенно по формуле:

Е = а(Т1 – Т2) (1)

Здесь Е – термоэлектродвижущая сила в вольтах, Т1 и Т2 – соответственно температура нагретого и холодного (холодных концов) спая термопары, а – коэффициент термо-ЭДС, зависящий от природы обоих металлов, образующих данную термопару, и выражающийся в микровольтах на градус.

Рис. 1. Схема включения термопары

Возьмем кольцевой проводник, состоящий из двух металлов А и Б (рис. 2), и нагреем места их соединения соответственно до температуры Т1 и Т2 так, чтобы Т1 было больше, чем Т2. В горячем спае такой термопары ток идет из металла Б в металл А, а в холодном спае из металла А в металл В. Принято считать в таком случае термоэлектродвижущую силу металла А положительной по отношению к металлу Б.

Все известные металлы можно расположить в последовательный ряд так, чтобы любой предыдущий металл имел положительную термоэлектродвижущую силу относительно последующего. Ниже приведены значения термоэлектродвижущей силы в милливольтах, развиваемой термопарой, в которой одним термоэлектродом служит указанный металл, а другим – платина, разность температур спаев которой равна 100° С (знаки «+» и « – », стоящие перед цифровыми данными термоэлектродвижущей силы, указывают полярность этой ЭДС относительно платины).

По приведенным выше данным легко подсчитать термоэлектродвижущую силу, развиваемую термопарой, составленной из любых указанных в таблице металлов. Она будет равна алгебраической разности термоэлектродвижущих сил двух термоэлектродов, для каждого из которых эта величина дается относительно платины. Так, например, термоэлектродвижущая сила пары висмут – сурьма , составит +4,7- ( – 6,5) = 11,2 мв,
а пары железо – алюминий +1,6 –– (+ 0,38) = 1,22 мв.

Рис.2. Кольцевой проводник, составленный из двух разных металлов

Если температуру холодного спая термопары поддерживать постоянной, термоэлектродвижущая сила будет изменяться приблизительно пропорционально изменению температуры горячего спая. Это дает возможность применять термопары для измерения тсмпературы.

Наряду с использованием термоэлектрических явлений для измерительных целей, начиная с середины прошлого столетия, делались многочисленные попытки применить термоэлементы для энергетических целей, т. е. использовать батареи из последовательно соединенных термоэлементов в качестве источников электрической энергии. На рис. 3 показано схематическое устройство термобатареи.

Рис. 3. Схематическое устройство термобатареи

Такой агрегат может найти практическое применение, если он будет обладать достаточно высоким коэффициентом полезного действия и сохранять свои свойства при длительной эксплуатации. Однако по причинам, о которых будет сказано дальше, до последнего времени не удавалось создать термоэлектрогенератор, удовлетворяющнй таким требованиям.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТЕРМОЭЛЕКТРОГЕНЕРАТОРА

Вследствие несовершенства нагревательных устройств далеко не вся тепловая энергия топлива поступает к горячим спаям термоэлементов. Кроме того, вследствие теплопроводности термоэлектродных материалов значительная часть тепла бесполезно расходуется, уходя от нагревателя через термоэлектроды к холодильнику. Наконец, не вся электрическая энергия, возникшая в результате термоэлектрического эффекта из тепловой энергии, отдается во внешнюю цепь. Часть этой энергии расходуется на преодоление внутреннего сопротивления термоэлемента. Поэтому полный КПД термогенератора получается низким.

Для увеличения термоэлектрического КПД, представляющего отношение отдаваемой термоэлектрогенератором электрической энергии к той части тепловой энергии, которая поступает к горячим спаям термоэлементов, следует стремиться:

1) повысить возможно более перепад температур между горячим и холодным спаями термоэлемента, т. е. работать при возможно более высокой температуре горячего спая, которая лимитируется температурами плавлении и жаростойкостью термоэлектродных материалов;

2) подбирать термоэлектродные материалы, развивающие в паре максимально высокую термоэлектродвижущую силу;

3) подбирать термоэлектродные материалы, у которых отношение средней теплопроводности к средней электропроводимости будет возможно меньшим.

Чисто металлические пары создают малую термоэлектродвижущую силу, поэтому КПД таких пар весьма низок (равен долям процента). Более высокие термо-ЭДС создает ряд веществ с полупроводниковыми свойствами (некоторые сульфиды, окислы, интерметаллические соединения). Но для этих веществ отношение средней теплопроводности к средней электропроводности бывает обычно выше, чем для чистых металлов. Однако термо-ЭДС некоторых полупроводниковых материалов настолько высока, что КПД термоэлементов, составленных. из подобных материалов, получается больше, чем в случае типичных металлов.

Применение веществ с полупроводниковыми свойствами затрудняется чрезвычайной хрупкостью этих веществ, легкой их окисляемостью, трудностью создания в горячем и холодном спаях контактов, устойчивых в условиях эксплуатации, а также сложностью технологии изготовления из этих материалов термоэлектродов с однозначными характеристиками. Из изложенного видно, что создать термоэлементы с достаточным КПД и с высоким сроком службы очень сложно. Этим и объясняются неудачные результаты многочисленых прежних попыток создания термоэлектрогенератора, приемлемого для энергетических целей.

Благодаря развитию отечественной науки и техники в настоящее время удалось построить пригодные ддя практики термоэлектргенераторы типа ТГК-3, которые имеют приемлемый (хотя и не очень высокий) КПД и достаточно высокий срок службы. Характеристики этого термоэлектрогенератора отнюдь не являются предельными. Надо полагать, что советские ученые дальнейшими своими работами достигнут значительного повышения этих характеристик.

Рис. 4. Устройство термоэлектрогенератора ТГК-3

КОНСТРУКЦИЯ ТЕРМОЭЛЕКТРОГЕНЕРАТОРА ТГК-3

Термоэлектрогенератор ТГК-3 предназначен для питания индивидуальных радиоприемников в неэлектрифицированных местностях, где применяется керосиновое освещение. Поэтому в качестве источника тепловой энергии для термоэлектрогенератора было решено использовать обычную керосиновую лампу-«молнию» служащую одновременно и для целей освещения. Таким образом, термоэлектрогенератор ТГК-3 не требует специальных затрат топлива для своей работы.

В заголовке статьи показан внешний вид термоэлектрогенератора ТГК-3, а на рис.4 — его схематическое устройство. Лампа, обогревающая термоэлектрогенератор, имеет укороченное стекло без верхней цилинрической части. Внутрь этого стекла, непосредственно над пламенем лампы, входит нижняя часть металлического теплопередатчика, имеющего форму многогранной призмы 1. На боковой поверхности верхней части этого теплопередатчика, выступающей над стеклом, расположены блоки термобатареи 2.

Для использования теплопередачи не только путем лучеиспускания от пламени, но и путем конвекции теплопередатчик снабжен несколькими продольными каналами. По этим каналам горячие газы (продукты сгорания в смеси с избыточным воздухом) поступают в вытяжную трубу 3, расположенную над теплопередатчиком. Для охлаждения холодных спаев термоэлементов к внешним поверхностям блоков прижаты металлические радиаторные ребра 4. Таким образом здесь осуществляется воздушное охлаждение.

Термоэлектрогенератор имеет две самостоятельные термобатареи, состоящие из большого числа последовательно соединенных элементов. Одна из них, дающая напряжение 2 в при токе 2 а, служит для питания анодных цепей приемника через вибропреобразователь, и вторая, дающая такое же напряжение при токе 0,5 а — для питания нитей накала. Кроме того, накальная батарея имеет отвод на 1,2 в (при токе 0,36 а). Спаи термоэлементов электрически изолированы от нагревателя и от ребер.

По сравнению с сухими элементами и батареями, применяемыми в настоящее время для питания радиоприемников, термоэлектрогенератор имеет ряд важных преимуществ.

С экономической точки зрения одним из преимуществ является резкое уменьшение расхода цветных металлов. Кроме того, следует отметить, что термоэлектрогенератор может неограниченно долго храниться в нерабочем состоянии и обладает длительным сроком службы в условиях эксплуатации; он устойчив в работе, дает стабильное напряжение и не боится коротких замыканий. Так же как и сухие элементы и батареи, термоэлектрогенератор не требует специального ухода.

В настоящее время промышленность приступила к серийному выпуску термоэлектрогенераторов типа ТГК-3.

Журнал «Радио», №2, 1954 г., стр. 24

Универсальный источник питания «УИП-1»

Универсальный источник питания «УИП-1». Таллинский завод «ТМТ». Модель 1955 года.

Универсальный источник питания »УИП-1» предназначен для питания постоянным стабилизированным напряжени ем анодно-сеточных цепей радиоламп, а также их накаль- ных цепей переменным напряжением в любой радиоаппа- ратуре в стадии разработки настройки или эксплуатации.

  1. Инструкция по эксплуатации и схема прибора.

Источник

Оцените статью
REMNABOR
Adblock
detector