Биполярный транзистор схема включения активного режима

Содержание
  1. Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры
  2. Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры
  3. Устройство биполярного транзистора.
  4. Принцип работы биполярного транзистора.
  5. Режимы работы.
  6. 1. Отсечка.
  7. 2. Активный режим.
  8. 3. Насыщение.
  9. 4. Барьерный режим.
  10. Схемы включения биполярных транзисторов.
  11. Основные параметры биполярных транзисторов:
  12. Биполярные транзисторы: схемы, режимы, моделирование Транзистор появился в 1948 (1947) году, благодаря трудам трёх инженеров и Шоккли, Брадтейна, Бардина. В те времена еще не предполагали их столь быстрое развитие и популяризацию. В советском союзе в 1949 году был представлен научному миру прототип транзистора лабораторией Красилова, это был триод С1-С4 (германиевый). Термин транзистор появился позже, в 50-х или 60-х годах. Однако широкое применение они нашли в конце 60-х, начале 70-х годов, когда в моду вошли портативные радиоприёмники. Кстати их долгое время так и назвали «транзистор». Такое название прилипло благодаря тому, что они заменили электронные лампы полупроводниковыми элементами, что вызвало революцию в радиотехнике. Что такое полупроводник? Транзисторы делают из полупроводниковых материалов, например, из кремния, ранее был популярен германий, но сейчас он редко встречается, ввиду его дороговизны и худших параметрах, в плане температур и прочего. Полупроводники это такие материалы, которые занимают по проводимости место между проводниками и диэлектриками. Их сопротивление в миллион раз больше проводников, и в сотни миллионов раз меньше диэлектриков. К тому же, чтобы через них начал протекать ток нужно приложить напряжение превышающее ширину запрещенной зоны, чтобы носители заряда перешли из валентной зоны в зону проводимости. У проводников запрещенной зоны нет как таковой. Переместиться в зону проводимости носитель заряда (электрон) может не только под действием внешнего напряжения, но и от тепла – это называется тепловой ток. Ток вызванный облучением световым потоком полупроводника называется фототок. Фоторезисторы, фотодиоды и прочие светочувствительные элементы работают именно на этом принципе. Для сравнения взгляните на таковые в диэлектриках и проводниках: Довольно наглядно. Из диаграмм видно, что диэлектрики всё же могут проводить ток, но это происходит после преодоления запрещенной зоны. На практике это называется напряжением пробоя диэлектрика. Так вот отличие германиевых от кремниевых структур в том, что для германия ширина запрещенной зоны, порядка 0.3 эВ (электронвольт), а у кремния более 0.6 эВ. С одной стороны это вызывает больше потерь, но использование кремния обусловлено технологическими и экономическими факторами. Полупроводник в результате легирования получают дополнительные носители заряда положительные (дырки) или отрицательные (электроны), это называется полупроводник p- или n-типа. Возможно, вы слышали фразу «pn-переход». Так это и есть граница между полупроводниками разных типов. В результате движения зарядов, образования ионизированных частиц каждого из типа примесей к основному полупроводнику образуется потенциальный барьер, он не даёт току протекать в оба направления, подробнее об этом расписано в книге «Транзистор — это просто». Внесение дополнительных носителей зарядов (легирование полупроводников) позволило создать полупроводниковые приборы: диоды, транзисторы, тиристоры и пр. Простейший пример – это диод, работу которого мы рассмотрели в предыдущей статье. Если приложить напряжение в прямом смещении, т.е. к p-области положительный полюсь, а к n-области отрицательный начнет протекать ток, а если наоборот – ток протекать не будет. Дело в том, что при прямом смещении основные носители заряда p-области (дырки) положительные, и отталкиваются от положительного потенциала источника питания, стремятся в область с более отрицательным потенциалом. В тоже время отрицательные носители n-области отталкиваются от отрицательного полюса источника питания. И те и другие носители стремятся к границе раздела (pn-переходу). Переход становиться уже, и носители преодолевают потенциальный барьер, перемещаясь в области с противоположными зарядами, где рекомбинируются с ними… Если приложено напряжение обратного смещения, то положительные носители p-области движутся в сторону отрицательного электрода источника питания, а электроны из n-области – в сторону положительного электрода. Переход расширяется, ток не протекает. Если не вдаваться в подробности этого достаточно для понимания процессов протекающих в полупроводнике. Условное графическое обозначение транзистора В РФ принято такое обозначение транзистора как вы видите на картинке ниже. Коллектор без стрелки, эмиттер со стрелкой, а база подведена перпендикулярно к черте между эмиттером и коллектором. Стрелка на эмиттере указывает направление протекания тока (от плюса к минусу). Для NPN-структуры стрелка эмиттера направлена от базы, а для PNP – к базе. При этом в схемах часто встречается такое же обозначение, но без окружности. Стандартное буквенное обозначение – «VT» и номер по порядку на схеме, иногда пишут просто «T». Изображение транзисторов без круга Что такое транзистор? Транзистор это активный полупроводниковый прибор, предназначенный для усиления сигнала и генерации колебаний. Он пришёл на смену вакуумным лампам – триодам. У транзисторов обычно три ножки – коллектор, эмиттер и база. База – это управляющий электрод, подавая ток на него, мы управляем коллекторным током. Таким образом, с помощью малого тока базы мы регулируем большие токи в силовой цепи, так и происходит усиление сигнала. Биполярные транзисторы бывают прямой (PNP) и обратной проводимости (NPN). Их структура изображена ниже. Что характерно, база занимает меньший объём полупроводникового кристалла. Характеристики Основные характеристики биполярных транзисторов: Ic – максимальный ток коллектора (выше нельзя – сгорит); Ucemax – максимальное напряжение, которое можно приложить между коллектором и эмиттером (выше нельзя – пробьет); Ucesat – напряжение насыщения транзистора. Падение напряжения в режиме насыщения (чем меньше, тем меньше потерь в открытом состоянии и нагрев); Β или H21Э – коэффициент усиления транзистора, равен Iк/Iб. Зависит от модели транзистора. Например, при к.усиления 100, при токе через базу 1мА, через коллектор будет протекать ток 100мА и т.д. Стоит сказать о токах транзистора, их три: 3. Ток эмиттера – содержит ток базы и ток эмиттера. Чаще всего ток эмиттера опускается, т.к. он почти не отличается от тока коллектора по величине. Разница лишь в том, что ток коллектора меньше чем ток эмиттера на величину тока базы, а т.к. у транзисторов высокий коэффициент усиления (допустим 100) то при токе в 1А через эмиттер, через базу будет протекать 10мА, а через коллектор 990мА. Согласитесь, ведь это достаточно малая разница, чтобы тратить на неё время при изучении электроники. Поэтому в характеристиках и указан Icmax. Режимы работы Транзистор может работать в разных режимах: 1. Режим насыщения. Простыми словами – это тот режим, в котором транзистор находится в максимально открытом состоянии (оба перехода смещены в прямом направлении). 2. Режим отсечки – это когда ток не протекает и транзистор закрыт (оба перехода смещены в обратном направлении). 3. Активный режим (коллектор-база смещен в обратном направлении, а эмиттер-база смещен в прямом). 4. Инверсный активный режим (коллектор-база смещен в прямом направлении, а эмиттер-база смещен в обратно) но он редко используется. Типовые схемы включения транзистора Выделяют три типовых схемы включения транзистора: Входной цепью считают эмиттер-базу, а выходной – коллектор-эмиттер. Тогда как входной ток – это ток базы, а выходной – коллекторный ток соответственно. В зависимости от схемы включения мы усиливаем ток или напряжение. В учебниках принято рассматривать именно такие схемы включения, но на практике они выглядят не столь очевидно. Стоит отметить, что при включении в схему с общим коллектором мы усиливаем ток и получаем синфазное (такое же, как на входе по полярности) напряжение на входе и выходе, а в схеме с общим эмиттером – получаем усиление напряжение и инверсное напряжение (выходное перевернуто относительно входного). В конце статьи мы проведем моделирование таких цепей и наглядно убедимся в этом. Моделирование транзисторного ключа Первая модель, которую мы рассмотрим, это транзистор в режиме ключа. Для этого нужно построить схему как на рисунке ниже. Допустим, что мы будем включать нагрузку с током в 0.1А, её роль будет выполнять резистор R3, установленный в цепи коллектора. В результате экспериментов, я установил, что h21Э у выбранной модели транзистора около 20, кстати, в datasheet на MJE13007 сказано от 8 до 40. Ток базы должен быть около 5мА. Делитель рассчитывается таким образом, чтобы ток базы имел минимальное влияние на ток делителя. Чтобы заданное напряжение не плавало при включении транзистора. Значит, ток делителя зададим 100мА. Rбрасч=(12в – 0.6в)/0.005= 2280 Ом Это расчетная величина, токи в результате этого вышли такими: При токе базы в 5мА, ток в нагрузке был порядка 100мА, на транзисторе у нас падает напряжение в 0.27 В. Расчеты верны. Что мы получили? Мы можем управлять нагрузкой, ток которой в 20 раз больше тока управления. Чтобы еще больше усилить, можно продублировать каскад, снизив ток управления. Или использовать другой транзистор. Ток коллектора у нас был ограничен сопротивлением нагрузки, для эксперимента я решил сделать сопротивление нагрузки в 0 Ом, тогда ток через транзистор задаётся током базы и коэффициентом усиления. В результате токи практически не отличаются, в чем вы и можете убедиться. Чтобы проследить влияние типа транзистора и его коэффициента усиления на токи, заменим его, не изменяя параметров цепи. После замены транзистора с MJE13007 на MJE18006 цепь продолжила работать, но на транзисторе падает уже 0.14 В, это значит, что при том же токе этот транзистор будет меньше греться, т.к. в тепло выделится Разница почти в два раза, если на десятых ватта это не столь существенно, представьте, что будет при токах в десятки ампер, тогда мощность потерь возрастет в 100 раз. Это приводит к тому, что ключи перегреваются и выходят из строя. Тепло, которое выделяется при нагреве, распространяется в корпусе устройства и может вызвать проблемы в работе соседних компонентов. Для этого все силовые элементы устанавливают на радиаторы, а иногда применяют активные системы охлаждения (куллер, жидкостные и др.). К тому же при повышении температуры проводимость полупроводника увеличивается, как и ток который через них протекает, что вызывает, опять же, повышение температуры. Лавинообразный процесс повышения тока и температуры в конечном итоге убьет ключ. Вывод такой: Чем меньше падение напряжения на транзисторе в открытом состоянии – тем меньше его нагрев и выше КПД всей схемы. Падения напряжения на ключе стало меньшим из-за того, что мы поставили более мощный ключ, с большим коэффициентом усиления, чтобы убедится в этом, уберем из цепи нагрузку. Для этого я снова задал R3=0 Ом. Ток коллектора стал 219мА, на MJE13003 в такой же цепи был около 130мА, это значит, что H21Э в модели этого транзистора больше в два раза. Стоит отметить, что коэффициент усиления одной модели в зависимости от конкретного экземпляра может различаться в десятки и сотки раз. Это вызывает необходимость отстройки и наладки аналоговых схем. В этой программе в моделях транзисторов использованы фиксированные коэффициенты, логика их выбора мне известна. На MJE18006 в даташите максимальный коэффициент H21Э указан 36. Моделирование усилителя переменного сигнала Приведенная модель отображает поведение ключа, если на него подать знакопеременный сигнал и простейшая схема включения его в цепь. Она напоминает схему музыкального усилителя мощности. Обычно в них используются несколько таких последовательно соединенных каскадов. Количество и схемы каскадов, их цепей питания зависят от класса, в котором работает усилитель (A, B и т.д.). Я смоделирую простейший усилитель класса А, который работает в линейном режиме, а также сниму осциллограммы входного и выходного напряжения. Резистор R1 задаёт рабочую точку транзистора. В учебниках пишут, что нужно найти такую точку на прямом отрезке ВАХ транзистора. Если напряжение смещения будет слишком низким – у вас будет искажаться нижняя полуволна сигнала. Конденсаторы нужны, чтобы отделить переменную составляющую от постоянной. Резисторы R2 установлен для того, чтобы задать режим работы ключу и выставить рабочие токи. Давайте рассмотрим осциллограммы. Мы подаём сигнал амплитудой в 10мВ и частотой 10000 Гц. Амплитуда на выходе у нас почти 2В. Пурпурным цветом обозначена выходная осциллограмма, красным – входной сигнал. Обратите внимание, что сигнал инвертирован, т.е. выходной сигнал перевернут относительно входного. Это особенность схемы с общим эмиттером. По схеме сигнал снимается с коллектора. Поэтому при открытии транзистора (когда сигнал на входе повышается) напряжение на нем будет падать. Когда входной сигнал понижается, транзистор начинает закрываться и напряжение начнет расти. Эта схема считается наиболее качественной в плане качества передачи сигнала, однако за это приходится платить мощностью потерь. Дело в том, что в состоянии, когда на вход не подаётся сигнал, транзистор всегда открыт и проводит ток. Тогда в тепло выделяется: UКЭ – это падение на транзисторе при отсутствии входного сигнала. Это простейшая схема усилителя, при этом любая другая схема работает подобным образом, отличается лишь соединение элементов и их комбинация. Например, транзисторный усилитель класса В состоит из двух транзисторов, каждый из которых работает для своей полуволны. Здесь используются транзисторы разных проводимостей: Положительная часть переменного входного сигнала открывает верхний транзистор, а отрицательная – нижний. Такая схема даёт больший КПД за счёт того, что транзисторы открываются и закрываются полностью. За счёт того, что когда сигнал отсутствует – оба транзистора закрыты, схема не потребляет ток, соответственно потерь нет. Понимание работы транзистора очень важно, если вы собираетесь заниматься электроникой. В этой сфере важно не только научится собирать схемы, но и анализировать их. Для систематического изучения и понимания устройств нужно понимать, куда и как будут протекать токи. Это поможет как в сборке, так и наладке и ремонту схем. Стоит отметить, что я намерено опустил многие нюансы и факторы чтобы не перегружать статью. При этом после расчетов всё же стоит подбирать резисторы. В моделировании это сделать просто. А на практике придется измерять токи и напряжения мультиметром, а в идеальном случае нужен осциллограф, чтобы проверить соответствие форм входного и выходного сигнала, в противном случае у вас будут искажения. Источник

Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры

Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры

Основной функцией биполярного транзистора (БТ) является увеличение мощности входного электрического сигнала. Эти полупроводниковые радиокомпоненты появились, как альтернатива электровакуумных триодов, и со временем практически вытеснили их из отрасли. Справедливости ради заметим, что лампы применяются и до сих пор, но в очень и очень узком сегменте аппаратуры специального назначения. В массовой же радиотехнике используются, в основном, транзисторы – биполярные и их ближайшие «родственники» полевые.

Ключевое преимущество этих элементов состоит в миниатюрности. Электровакуумный усилитель со схожими характеристиками оказывается в несколько раз крупнее биполярного транзистора. Вследствие этого применение БТ в радиоэлектронике приводит к существенному уменьшению габаритных размеров конечной радиотехнической продукции.

Биполярным данный транзистор называется из-за того, что в физических процессах, протекающих во время его функционирования, участвуют оба типа носителей заряда – и электроны, и дырки. Это оказывает влияние на принцип управления выходным сигналом. В биполярных транзисторах выходными параметрами управляет ток, а не электрическое поле, как в полевых (униполярных).

Устройство биполярного транзистора.

Этот полупроводниковый триод состоит из 3 частей – эмиттера, коллектора и базы. Таким образом, ключевыми элементами биполярного транзистора являются два p-n-перехода, а не один, как в полевых. Эмиттер исполняет функцию генератора носителей заряда, которые формируют рабочий ток, стекающий в приёмник – коллектор. База необходима для подачи управляющего напряжения.

Если рассматривать плоскую модель БТ, то радиокомпонент представляет собой две области с p- или n-проводимостью (эмиттер и коллектор), разделённые тонким слоем полупроводника с проводимостью обратного знака (база). Полупроводниковый кристалл со стороны коллектора физически крупнее. Такое соотношение обеспечивает правильную работу биполярного транзистора.

В зависимости от типа проводимости эмиттера, коллектора и базы различают PNP- и NPN-транзисторы. В принципе, они функционируют одинаково с той лишь разницей, что к ним прикладываются напряжения разной полярности. Выбор того или иного вида БТ определяется особенностями конкретных радиотехнических устройств.

Принцип работы биполярного транзистора.

При подключении эмиттера и коллектора к источнику питания создаются почти все условия для протекания тока. Однако свободному перемещению носителей заряда препятствует база, и для устранения этой помехи на неё подаётся напряжение смещения. В базовом слое полупроводника возникают физико-химические процессы электронно-дырочной рекомбинации, в результате которой через базу начинает течь небольшой ток. В результате p-n-переходы открывают путь потоку носителей заряда от эмиттера к коллектору.

Если ток, протекающий через базу, меняется по какому-то закону, то точно так же изменяется и мощный ток между эмиттером и коллектором. Следовательно, мы получаем на выходе биполярного транзистора такой же сигнал, как и на базе, но с более высокой мощностью. В этом и состоит усилительная функция биполярного транзистора.

Режимы работы.

Существует 4 режима, в одном из которых может работать биполярный транзистор. В этот список входят следующие:

  1. отсечка;
  2. активный режим;
  3. насыщение;
  4. барьерный режим.

Существует ещё так называемый инверсный режим, но он на практике не используется и интересен только при теоретических исследованиях поведения полупроводников. Поэтому опишем подробнее только четыре первых.

1. Отсечка.

В том случае, если разность потенциалов между эмиттером и базой ниже некоторого значения (примерно 0.6 Вольт), то база-эмиттерный p-n-переход оказывается закрытым, поскольку ток базы не возникает. В связи с этим коллекторный ток не протекает по той причине, что в базовом слое отсутствуют свободные электроны. Таким образом, транзистор переходит в состояние отсечки и сигнал не усиливает. Этот режим используется в цифровых схемах, когда БТ работает как ключ в положении «разомкнуто».

2. Активный режим.

В этом режиме радиокомпонент усиливает сигнал, то есть исполняет свою основную функцию. На базу подаётся разность потенциалов, которая открывает база-эмиттерный p-n-переход. Как следствие, в транзисторе начинают протекать токи коллектора и базы. Значение коллекторного тока вычисляется как арифметическое произведение величины тока базы и коэффициента усиления.

3. Насыщение.

В этот режим биполярный транзистор входит при увеличении тока базы до некоего предельного значения, при котором p-n-переходы полностью открываются. Значение тока, протекающего через БТ при его насыщении, зависит лишь от питающего напряжения и величины нагрузки в коллекторной цепи. В данном режиме входной сигнал не усиливается, ведь коллекторный ток не воспринимает изменений тока базы. Способность транзистора к переходу в насыщение используется в цифровой технике, когда БТ играет роль ключа в замкнутом положении.

4. Барьерный режим.

Здесь транзистор работает как диод с последовательно включённым резистором. Для этого базу напрямую или через малоомное сопротивление соединяют с коллектором. В данном режиме триоды хорошо показывают себя в высокочастотных устройствах. Кроме того, использование транзистора в барьерном режиме целесообразно на реальном производстве для снижения общего количества комплектующих.

Схемы включения биполярных транзисторов.

Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.

При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.

Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.

При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.

Основные параметры биполярных транзисторов:

  1. Максимально допустимый постоянный ток коллектора;
  2. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и сопротивлении в цепи база-эмиттер;
  3. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и токе базы, равным нулю;
  4. Максимальное напряжение коллектор-база при заданном токе коллектора и токе эмиттера, равным нулю;
  5. Максимально допустимое постоянное напряжение эмиттер-база при токе коллектора, равном нулю;
  6. Максимально допустимая постоянная мощность, рассеивающаяся на коллекторе;
  7. Статический коэффициент передачи тока;
  8. Напряжение насыщения между коллектором и эмиттером;
  9. Обратный ток коллектора. Ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера;
  10. Обратный ток эмиттера. Ток через эмиттерный переход при заданном обратном напряжении эмиттер-база и разомкнутом выводе коллектора;
  11. Граничная частота коэффициента передачи тока;
  12. Коэффициент шума;
  13. Емкость коллекторного перехода;
  14. Максимально допустимая температура перехода.

Источник

Биполярные транзисторы: схемы, режимы, моделирование

Транзистор появился в 1948 (1947) году, благодаря трудам трёх инженеров и Шоккли, Брадтейна, Бардина. В те времена еще не предполагали их столь быстрое развитие и популяризацию. В советском союзе в 1949 году был представлен научному миру прототип транзистора лабораторией Красилова, это был триод С1-С4 (германиевый). Термин транзистор появился позже, в 50-х или 60-х годах.

Однако широкое применение они нашли в конце 60-х, начале 70-х годов, когда в моду вошли портативные радиоприёмники. Кстати их долгое время так и назвали «транзистор». Такое название прилипло благодаря тому, что они заменили электронные лампы полупроводниковыми элементами, что вызвало революцию в радиотехнике.

Что такое полупроводник?

Транзисторы делают из полупроводниковых материалов, например, из кремния, ранее был популярен германий, но сейчас он редко встречается, ввиду его дороговизны и худших параметрах, в плане температур и прочего.

Полупроводники это такие материалы, которые занимают по проводимости место между проводниками и диэлектриками. Их сопротивление в миллион раз больше проводников, и в сотни миллионов раз меньше диэлектриков. К тому же, чтобы через них начал протекать ток нужно приложить напряжение превышающее ширину запрещенной зоны, чтобы носители заряда перешли из валентной зоны в зону проводимости.

У проводников запрещенной зоны нет как таковой. Переместиться в зону проводимости носитель заряда (электрон) может не только под действием внешнего напряжения, но и от тепла – это называется тепловой ток. Ток вызванный облучением световым потоком полупроводника называется фототок. Фоторезисторы, фотодиоды и прочие светочувствительные элементы работают именно на этом принципе.

Для сравнения взгляните на таковые в диэлектриках и проводниках:

Довольно наглядно. Из диаграмм видно, что диэлектрики всё же могут проводить ток, но это происходит после преодоления запрещенной зоны. На практике это называется напряжением пробоя диэлектрика.

Так вот отличие германиевых от кремниевых структур в том, что для германия ширина запрещенной зоны, порядка 0.3 эВ (электронвольт), а у кремния более 0.6 эВ. С одной стороны это вызывает больше потерь, но использование кремния обусловлено технологическими и экономическими факторами.

Полупроводник в результате легирования получают дополнительные носители заряда положительные (дырки) или отрицательные (электроны), это называется полупроводник p- или n-типа. Возможно, вы слышали фразу «pn-переход». Так это и есть граница между полупроводниками разных типов. В результате движения зарядов, образования ионизированных частиц каждого из типа примесей к основному полупроводнику образуется потенциальный барьер, он не даёт току протекать в оба направления, подробнее об этом расписано в книге «Транзистор — это просто».

Внесение дополнительных носителей зарядов (легирование полупроводников) позволило создать полупроводниковые приборы: диоды, транзисторы, тиристоры и пр. Простейший пример – это диод, работу которого мы рассмотрели в предыдущей статье.

Если приложить напряжение в прямом смещении, т.е. к p-области положительный полюсь, а к n-области отрицательный начнет протекать ток, а если наоборот – ток протекать не будет. Дело в том, что при прямом смещении основные носители заряда p-области (дырки) положительные, и отталкиваются от положительного потенциала источника питания, стремятся в область с более отрицательным потенциалом.

В тоже время отрицательные носители n-области отталкиваются от отрицательного полюса источника питания. И те и другие носители стремятся к границе раздела (pn-переходу). Переход становиться уже, и носители преодолевают потенциальный барьер, перемещаясь в области с противоположными зарядами, где рекомбинируются с ними…

Если приложено напряжение обратного смещения, то положительные носители p-области движутся в сторону отрицательного электрода источника питания, а электроны из n-области – в сторону положительного электрода. Переход расширяется, ток не протекает.

Если не вдаваться в подробности этого достаточно для понимания процессов протекающих в полупроводнике.

Условное графическое обозначение транзистора

В РФ принято такое обозначение транзистора как вы видите на картинке ниже. Коллектор без стрелки, эмиттер со стрелкой, а база подведена перпендикулярно к черте между эмиттером и коллектором. Стрелка на эмиттере указывает направление протекания тока (от плюса к минусу). Для NPN-структуры стрелка эмиттера направлена от базы, а для PNP – к базе.

При этом в схемах часто встречается такое же обозначение, но без окружности. Стандартное буквенное обозначение – «VT» и номер по порядку на схеме, иногда пишут просто «T».

Изображение транзисторов без круга

Что такое транзистор?

Транзистор это активный полупроводниковый прибор, предназначенный для усиления сигнала и генерации колебаний. Он пришёл на смену вакуумным лампам – триодам. У транзисторов обычно три ножки – коллектор, эмиттер и база. База – это управляющий электрод, подавая ток на него, мы управляем коллекторным током. Таким образом, с помощью малого тока базы мы регулируем большие токи в силовой цепи, так и происходит усиление сигнала.

Биполярные транзисторы бывают прямой (PNP) и обратной проводимости (NPN). Их структура изображена ниже. Что характерно, база занимает меньший объём полупроводникового кристалла.

Характеристики

Основные характеристики биполярных транзисторов:

Ic – максимальный ток коллектора (выше нельзя – сгорит);

Ucemax – максимальное напряжение, которое можно приложить между коллектором и эмиттером (выше нельзя – пробьет);

Ucesat – напряжение насыщения транзистора. Падение напряжения в режиме насыщения (чем меньше, тем меньше потерь в открытом состоянии и нагрев);

Β или H21Э – коэффициент усиления транзистора, равен Iк/Iб. Зависит от модели транзистора. Например, при к.усиления 100, при токе через базу 1мА, через коллектор будет протекать ток 100мА и т.д.

Стоит сказать о токах транзистора, их три:

3. Ток эмиттера – содержит ток базы и ток эмиттера.

Чаще всего ток эмиттера опускается, т.к. он почти не отличается от тока коллектора по величине. Разница лишь в том, что ток коллектора меньше чем ток эмиттера на величину тока базы, а т.к. у транзисторов высокий коэффициент усиления (допустим 100) то при токе в 1А через эмиттер, через базу будет протекать 10мА, а через коллектор 990мА. Согласитесь, ведь это достаточно малая разница, чтобы тратить на неё время при изучении электроники. Поэтому в характеристиках и указан Icmax.

Режимы работы

Транзистор может работать в разных режимах:

1. Режим насыщения. Простыми словами – это тот режим, в котором транзистор находится в максимально открытом состоянии (оба перехода смещены в прямом направлении).

2. Режим отсечки – это когда ток не протекает и транзистор закрыт (оба перехода смещены в обратном направлении).

3. Активный режим (коллектор-база смещен в обратном направлении, а эмиттер-база смещен в прямом).

4. Инверсный активный режим (коллектор-база смещен в прямом направлении, а эмиттер-база смещен в обратно) но он редко используется.

Типовые схемы включения транзистора

Выделяют три типовых схемы включения транзистора:

Входной цепью считают эмиттер-базу, а выходной – коллектор-эмиттер. Тогда как входной ток – это ток базы, а выходной – коллекторный ток соответственно.

В зависимости от схемы включения мы усиливаем ток или напряжение. В учебниках принято рассматривать именно такие схемы включения, но на практике они выглядят не столь очевидно.

Стоит отметить, что при включении в схему с общим коллектором мы усиливаем ток и получаем синфазное (такое же, как на входе по полярности) напряжение на входе и выходе, а в схеме с общим эмиттером – получаем усиление напряжение и инверсное напряжение (выходное перевернуто относительно входного). В конце статьи мы проведем моделирование таких цепей и наглядно убедимся в этом.

Моделирование транзисторного ключа

Первая модель, которую мы рассмотрим, это транзистор в режиме ключа. Для этого нужно построить схему как на рисунке ниже. Допустим, что мы будем включать нагрузку с током в 0.1А, её роль будет выполнять резистор R3, установленный в цепи коллектора.

В результате экспериментов, я установил, что h21Э у выбранной модели транзистора около 20, кстати, в datasheet на MJE13007 сказано от 8 до 40.

Ток базы должен быть около 5мА. Делитель рассчитывается таким образом, чтобы ток базы имел минимальное влияние на ток делителя. Чтобы заданное напряжение не плавало при включении транзистора. Значит, ток делителя зададим 100мА.

Rбрасч=(12в – 0.6в)/0.005= 2280 Ом

Это расчетная величина, токи в результате этого вышли такими:

При токе базы в 5мА, ток в нагрузке был порядка 100мА, на транзисторе у нас падает напряжение в 0.27 В. Расчеты верны.

Что мы получили?

Мы можем управлять нагрузкой, ток которой в 20 раз больше тока управления. Чтобы еще больше усилить, можно продублировать каскад, снизив ток управления. Или использовать другой транзистор.

Ток коллектора у нас был ограничен сопротивлением нагрузки, для эксперимента я решил сделать сопротивление нагрузки в 0 Ом, тогда ток через транзистор задаётся током базы и коэффициентом усиления. В результате токи практически не отличаются, в чем вы и можете убедиться.

Чтобы проследить влияние типа транзистора и его коэффициента усиления на токи, заменим его, не изменяя параметров цепи.

После замены транзистора с MJE13007 на MJE18006 цепь продолжила работать, но на транзисторе падает уже 0.14 В, это значит, что при том же токе этот транзистор будет меньше греться, т.к. в тепло выделится

Разница почти в два раза, если на десятых ватта это не столь существенно, представьте, что будет при токах в десятки ампер, тогда мощность потерь возрастет в 100 раз. Это приводит к тому, что ключи перегреваются и выходят из строя.

Тепло, которое выделяется при нагреве, распространяется в корпусе устройства и может вызвать проблемы в работе соседних компонентов. Для этого все силовые элементы устанавливают на радиаторы, а иногда применяют активные системы охлаждения (куллер, жидкостные и др.).

К тому же при повышении температуры проводимость полупроводника увеличивается, как и ток который через них протекает, что вызывает, опять же, повышение температуры. Лавинообразный процесс повышения тока и температуры в конечном итоге убьет ключ.

Вывод такой: Чем меньше падение напряжения на транзисторе в открытом состоянии – тем меньше его нагрев и выше КПД всей схемы.

Падения напряжения на ключе стало меньшим из-за того, что мы поставили более мощный ключ, с большим коэффициентом усиления, чтобы убедится в этом, уберем из цепи нагрузку. Для этого я снова задал R3=0 Ом. Ток коллектора стал 219мА, на MJE13003 в такой же цепи был около 130мА, это значит, что H21Э в модели этого транзистора больше в два раза.

Стоит отметить, что коэффициент усиления одной модели в зависимости от конкретного экземпляра может различаться в десятки и сотки раз. Это вызывает необходимость отстройки и наладки аналоговых схем. В этой программе в моделях транзисторов использованы фиксированные коэффициенты, логика их выбора мне известна. На MJE18006 в даташите максимальный коэффициент H21Э указан 36.

Моделирование усилителя переменного сигнала

Приведенная модель отображает поведение ключа, если на него подать знакопеременный сигнал и простейшая схема включения его в цепь. Она напоминает схему музыкального усилителя мощности.

Обычно в них используются несколько таких последовательно соединенных каскадов. Количество и схемы каскадов, их цепей питания зависят от класса, в котором работает усилитель (A, B и т.д.). Я смоделирую простейший усилитель класса А, который работает в линейном режиме, а также сниму осциллограммы входного и выходного напряжения.

Резистор R1 задаёт рабочую точку транзистора. В учебниках пишут, что нужно найти такую точку на прямом отрезке ВАХ транзистора. Если напряжение смещения будет слишком низким – у вас будет искажаться нижняя полуволна сигнала.

Конденсаторы нужны, чтобы отделить переменную составляющую от постоянной. Резисторы R2 установлен для того, чтобы задать режим работы ключу и выставить рабочие токи. Давайте рассмотрим осциллограммы. Мы подаём сигнал амплитудой в 10мВ и частотой 10000 Гц. Амплитуда на выходе у нас почти 2В.

Пурпурным цветом обозначена выходная осциллограмма, красным – входной сигнал.

Обратите внимание, что сигнал инвертирован, т.е. выходной сигнал перевернут относительно входного. Это особенность схемы с общим эмиттером. По схеме сигнал снимается с коллектора. Поэтому при открытии транзистора (когда сигнал на входе повышается) напряжение на нем будет падать. Когда входной сигнал понижается, транзистор начинает закрываться и напряжение начнет расти.

Эта схема считается наиболее качественной в плане качества передачи сигнала, однако за это приходится платить мощностью потерь. Дело в том, что в состоянии, когда на вход не подаётся сигнал, транзистор всегда открыт и проводит ток. Тогда в тепло выделяется:

UКЭ – это падение на транзисторе при отсутствии входного сигнала.

Это простейшая схема усилителя, при этом любая другая схема работает подобным образом, отличается лишь соединение элементов и их комбинация. Например, транзисторный усилитель класса В состоит из двух транзисторов, каждый из которых работает для своей полуволны.

Здесь используются транзисторы разных проводимостей:

Положительная часть переменного входного сигнала открывает верхний транзистор, а отрицательная – нижний.

Такая схема даёт больший КПД за счёт того, что транзисторы открываются и закрываются полностью. За счёт того, что когда сигнал отсутствует – оба транзистора закрыты, схема не потребляет ток, соответственно потерь нет.

Понимание работы транзистора очень важно, если вы собираетесь заниматься электроникой. В этой сфере важно не только научится собирать схемы, но и анализировать их. Для систематического изучения и понимания устройств нужно понимать, куда и как будут протекать токи. Это поможет как в сборке, так и наладке и ремонту схем.

Стоит отметить, что я намерено опустил многие нюансы и факторы чтобы не перегружать статью. При этом после расчетов всё же стоит подбирать резисторы. В моделировании это сделать просто. А на практике придется измерять токи и напряжения мультиметром, а в идеальном случае нужен осциллограф, чтобы проверить соответствие форм входного и выходного сигнала, в противном случае у вас будут искажения.

Источник

Оцените статью
REMNABOR
Adblock
detector