Блок питания detech jx h400a схема

БП DeTech 6 JX-H450A 450W (новый) выключается и долго не запаскается

Купил новый БП 450Вт. Первый вечер все супер, на второй день выключился комп(( перепробывал все. Выяснил, причина в БП. При замыкании зеленого и черного проводов успел промерять все напряжения, все в норме, но тут он выключился, долго не запускался, на следуючий день опять перемычка запастился на 30-40 сикунд и опять выключился, не запускался около 3 часов, опять 30-40сикунд и вырубается(((((((

Подскажите что делать. в чем причина.
Вычитал, что в этом блоке питания есть защита от перенапряжения ( в сети 215-225В), защита от перегрева (горелого запаха не слышно, воздух дует холодный) и защита от КЗ (приэтом случае думаю, что вообще не запускался бы)

Может быть какой-то заводской брак.

У кошки 4 ноги. Вход, выход, земля и питание.

UAM , типо не пропай или высохшие кондеры?

Озвучьте конфигурацию которую он тянет .
detech.com.ua/catalog/view/item/196/
Блок питания JX-H450A (стандарт ATX12V 2.31) с системой охлаждения, состоящей из одного вентилятора 120 мм. Материал корпуса — сталь 0,5 мм. Цвет — серый.

Подключение:
* кабель питания
* 1 разъемом для материнской платы 20+4 pin
* 1 разъем для процессора 4 pin
* 3 разъема IDE
* 2 разъема SATA
* 1 разъем FDD

Crossmen92 , ТС пишет что БП новый. Скорее всего, гарантийный.

У кошки 4 ноги. Вход, выход, земля и питание.

Да фиг его знает, может у него там висят два харда да какой-нибудь Феном + видяха, а внутренности я его БП не видывал.

Ребята, извините за столь долгий ответ.
Конфигурация компа до боли простенькая: проц — семпрончик какойто 2000+, мать Епокх рда3и, видуха — джифорс фх5500 256мб, один винт 250гб, и привод, рание стоял 300ватний БП

Sempron 2000>>> XP? . Socket А(462). Epoch, — я так понимаю компания давно почила в бозе.
Sempron 2000 — 62W — то есть 12A по 5V
en.wikipedia.org/wiki/List_of_AMD_Sempron_microprocessors#.22Thoroughbred-.
Geforce 5500 — ?? не знаю сколько Ампер по 5V и 3,3V, .
Ещё неизвестно чего и как кушает мать, но тоже явно не по 12V.

Предполагаю что блок просто не тянет столько Ампер по 5 и 3,3V, и/или скорее возникает перекос напряжений и защита его вырубает, потому что по 5+3,3V напряжение проваливется, а по 12V возрастает.

Как раз, может быть, тот случай когда low-end блоки питания нового стандарта не приспособлены для старых систем.

Что делать? Возвращать обратно старый. Предварительно проверив на предмет опухших конденсаторов.

да буду возвращать старый, предварительно оживив, CODEGEN 300 Вт на шаси CG-13C, есть пару вздувшихся емкостей плюс сгорел резистор? а под ним и порядковый номер((( ЕЩЕ ПРЕДСТОИТ ВЫЯСНИТЬ ЕГО НОМИНАЛ.

Дело в том, что ДеТеч уходит в защиту даже когда замыкаю зеленый с черним, причем проработав при этом разное время, и опять же следующий старт иногда через пару минут, а иногда через 3-6 часов. Почему так.

Дело в том, что ДеТеч уходит в защиту даже когда замыкаю зеленый с черним, причем проработав при этом разное время, и опять же следующий старт иногда через пару минут, а иногда через 3-6 часов. Почему так.
не пойму- это без нагрузки или с нагрузкой?
Если с нагрузкой- то ему без разницы, — он отрабатывает защиту по напряжению «внутри себя».
Если без нагрузки, то что-то с холостым ходом не так. может кто умнее. пусть выскажется.. Надо возвращать. непорядок это.
а под ним и порядковый номер
Ну и какой-же? Там обычно 22 Om с дежурки выгорает.
Вообще по старым БП море информации и схем.
Хотя даже Codegenы- они такие разные, вот любуюсь на свою кучку из 5 штук, и каждый по другому сделан.

Уходит в защиту и с нагрузкой и без нагрузки одинаково. Отнес в магазин, сказали будут тестировать, но предположительно высказали мнение что я виноват, мол пробит через сеть, типа скачки напряжения и все такое, а я им, что у меня стабилизатор. Сказали будим разбираться.

Источник

Ремонт блока питания ATX Kinghun JX-H500A (не включается)

Компьютерный блок питания ATX Kinghun JX-H500A не запускается.

На корпусе находится наклейка с его характеристиками.

Разбираем блок питания и производим внешний осмотр. Визуально не заметно каких-либо проблем. Маркировка платы Kinghun KH-0100 REV:4.2 2010-3-1.

С обратной стороны плата выглядит следующим образом.

На плате можно заметить кольцевые трещины. Пропаиваем такие места.

При замере дежурного питания +5 В (+5VSB) обращаем внимание на его завышенное напряжение до +8,1 В. Напряжение PWR_OK равно +1,3 В

Данное напряжение оказалось из-за электролитического конденсатора C37 4.7 мкФ х 50 В с завышенным ESR и заниженной емкостью. Пришлось его заменить и напряжение восстановилось к нужному значению +5,1 В. Напряжение PWR_OK равно +0,9 В

Однако блок питания после этого не запустился. В качестве основной микросхемы ШИМ контроллера используется CG8010DX16. Ее максимальное напряжение питания составляет 7 В. По всей видимости из-за завышенного дежурного напряжения. Сопротивление ноги VCC (вывод №13) на GND равно 206 Ом. Аналогами CG8010 являются LPG899, WT7520, SDC2008, EST7502 и AT2008.

Схему данного блока питания найти не удалось. По следующей ссылке можно скачать схему блока питания Chip Goal 250W на микросхеме CCG8010DX.

Производим замену микросхемы с CG8010 на WT7520.

После этого производим замер напряжений на выходе блока питания, подключив его к сетевому напряжению через лампочку накаливания 100 В и замкнув выводы PS_ON# и GND на разъеме.

Убедившись в нахождении выходных напряжений в требуемых допусках отклонений, подключаем его к компьютеру и повторно проверяем. Блок питания ATX Kinghun JX-H500A полностью исправен и пригоден к дальнейшему использованию.

Источник

Схема блока питания компьютера — полное описание с примерами

На рынке компонентов для персональных компьютеров (включая блоки питания для ПК и серверов) присутствует множество фирм, начиная от сверхкорпораций до малоизвестных мелких производителей. Несмотря на такое разнообразие, большинство БП строятся по схожему принципу, хотя и на разной элементной базе. Зная эти принципы, можно разобраться в работе любого источника питающих напряжений.

Устройство и общая структурная схема

Источник питающих напряжений для ПК строится по обычной по традиционной схемотехнике, характерной для импульсных БП со стабилизацией напряжения. Но схема блока питания компьютера стандарта ATX имеет дополнительные специфические узлы, позволяющие управлять модулем сигналами от материнской платы. Далее все блоки рассмотрены подробно.

Входные цепи

Входные цепи защищают сеть от помех, генерируемых блоком питания во время работы. Помимо фильтра они содержат элементы защиты БП от скачков напряжения и замыканий внутри блока.

Типовая схема содержит плавкий предохранитель, сгорающий при повышении потребляемого тока сверх номинала, а также варистор. В обычном режиме его сопротивление велико и он не участвует в работе узла. При выбросах в сети его сопротивление уменьшается, ток через него увеличивается, тем самым он ускоряет перегорание плавкой вставки. Также входные цепи содержат элементы фильтрации:

  • от синфазных помех (синфазный дроссель и конденсаторы Cy);
  • от дифференциальных помех (конденсаторы Cx и Cx1).

Реальные блоки питания могут содержать не все указанные элементы и наоборот – могут содержать дополнительные (два синфазных дросселя, терморезистор для ограничения тока заряда конденсаторов выпрямителя и т.п.).

Высоковольтный выпрямитель

Обычно выполняется по мостовой двухполупериодной схеме. Сглаживающие конденсаторы включены последовательно. Назначение такого включения двойное:

  • создание средней точки для питания полумостового инвертора;
  • создание схемы удвоения напряжения при питании сети от 110 вольт.

Параллельно конденсаторам часто устанавливают резисторы для быстрого разряда емкостей при отключении питания, а также для выравнивания напряжения средней точки – оно может отличаться от половины Uпит из-за разного тока утечки оксидных конденсаторов. Для защиты от перенапряжений параллельно конденсаторам могут устанавливаться варисторы или стабилитроны.

Инвертор

Инвертор служит для преобразования выпрямленного сетевого напряжения в импульсное. Чаще всего они выполняются по двухтактной полумостовой схеме. Полумост является компромиссом между пушпульным и мостовым преобразователем – он свободен от выбросов напряжения, влекущих повышенные требования к параметрам транзисторов, для него применяются трансформаторы без средней точки в первичной обмотке и в нем используется всего два транзистора. Но к первичной обмотке прикладывается только половина напряжения питания (формируется за счет средней точки сглаживающего фильтра).

В некоторых источниках используются и однотактные прямоходовые инверторы (у обратноходовых с ростом мощности значительно растут габариты и масса импульсных трансформаторов).

Схема управления ключами

В стабилизированных источниках питания ключи управляются методом широтно-импульсной модуляции. На управляющие электроды транзисторов подаются импульсы, следующие с одинаковой частотой, но с регулируемой длительностью. Чтобы увеличить напряжение, длительность импульсов также увеличивается. Чтобы снизить выходной уровень, транзисторы открываются на меньшее время. Для организации ШИМ обычно применяются микросхемы. У них «на борту» имеется полный набор узлов от генератора и усилителя ошибки до выходных транзисторных ключей (впрочем, достаточно маломощных, чтобы обойтись без внешних силовых транзисторов).

Вторичные цепи

Напряжение с первичной обмотки импульсного трансформатора преобразуется в пониженное импульсное на вторичных обмотках, а далее выпрямляется и сглаживается.

Обмотки обычно выполняются с отводом от средней точки. Выпрямители при этом исполняются по мостовой схеме. Наиболее энергоемкие каналы (+5 и +12 вольт) запитываются от верхней части мостов (для них устанавливаются мощные вентили или сборки), а отрицательные напряжения снимаются с нижних диодов (они менее мощные). Дальше выпрямленные напряжения сглаживаются с помощью LC-цепей (они включают в себя и обмотки дросселя групповой стабилизации). Для напряжения +3,3 VDC обычно применяется отдельный выпрямитель, либо оно формируется из канала +5 VDC с помощью дополнительного линейного стабилизатора.

Схема дежурного напряжения

Напряжение Stand By нужно для питания участка схемы материнской платы ПК, отвечающего за старт компьютера. Также оно используется для питания микросхемы ШИМ и драйвера инвертора до того, как БП запущен. Обычно узел выполняется в виде отдельного генератора, питающегося от высоковольтного выпрямителя.

Формирование сигнала PG и обработка сигнала PS_ON

За эту задачу отвечают отдельные участки схемы. При наличии всех (или части) питающих напряжений формируется сигнал PG (Power Good), сигнализирующий компьютеру об исправности блока питания. При получении от материнской платы сигнала PS_ON, запускается генератор контроллера ШИМ. У некоторых специализированных микросхем есть отдельные входы для формирования и обработки этих сигналов (LPG899, AT2005B). Также существуют микросхемы-супервайзеры, которые выполняют эти функции и генерируют сигналы управления. В некоторых БП эти задачи возложены на участки схемы на дискретных элементах.

Цепи обратной связи

В большинстве БП для поддержания уровня используется только одно напряжение (обычно, +12 VDC или +5 VDC). Остальные каналы включены в систему групповой стабилизации, влияющие на измеряемое напряжение. Такой принцип не позволяет добиться высокого коэффициента стабилизации, но значительно упрощает построение схемы БП ATX.

Описание схем блоков питания компьютера стандарта ATX

В качестве примеров рассматриваются несколько схем источников питания различной мощности. Схемы подобраны так, чтобы одинаковые функциональные узлы строились на различных элементах.

300-ваттный БП производства JNC computer

В качестве первого примера приведена схема электрическая принципиальная БП SY-300ATX 300W. Входные цепи построены несколько упрощенно. В нем отсутствует конденсатор Cx для защиты от дифференциальных помех. Также нет варистора для защиты от выбросов сетевого напряжения. Полностью выполнена лишь схема защиты от синфазных помех – на дросселе LF1 и конденсаторах CY1 и CY2.

Выпрямитель на сборке RL205 особенностей не имеет, сглаживающий фильтр С1С2 одновременно выполняет функции делителя напряжения. Для выравнивания средней точки и быстрого разряда емкостей при выключении применены резисторы R13, R12 и варисторы V1, V2. От выпрямленного напряжения величиной около 310 вольт работает схема, формирующая дежурное напряжение.

Генератор выполнен на транзисторе Q3, первичные обмотки трансформатора T3 выполняют функцию нагрузки и обратной связи. Нижняя половина вторичной обмотки формирует собственно напряжение Stand By, которое выпрямляется диодом D7, сглаживается фильтром C13L2C14. Для его стабилизации организован еще один контур обратной связи через оптрон U1. Если выходной уровень повышается, свечение светодиода оптрона становится интенсивнее, приемный транзистор открывается, прикрывая транзистор Q4, который уменьшая напряжение на базе Q3, уменьшает время его открытого состояния. С двух обмоток (суммы верхней и нижней половин) снимается питание для микросхемы генератора и предварительного каскада инвертора. Оно выпрямляется диодом D8, сглаживается емкостью C12.

Средняя точка делителя выпрямленного высокого напряжения подключена к одному концу первичной обмотки импульсного трансформатора T3, защищенной от коммутационных выбросов снаббером R16C10. Другой конец первичной обмотки подключен к средней точке полумостового инвертора, образованного транзисторами Q1,Q2. Полумост изолирован от низковольтной части трансформатором T2. Импульсы на вторичных обмотках формируются драйвером на транзисторах Q5, Q6, которые, в свою очередь, попеременно открываются и закрываются под управлением выводов 7 и 8 микросхемы AT2005. Эта микросхема разработана для использования в качестве контроллера ШИМ в компьютерных блоках питания.

Как и любой PWM-контроллер она выполняет функции:

  • формирование импульсов управлениями транзисторами инвертора;
  • регулировка длительности импульсов в целях стабилизации выходных напряжений.

Кроме этого, она выполняет специфические для компьютерных БП задачи:

  • формирование сигнала Power_OK (PG);
  • запуск инвертора при получении сигнала Power_ON от материнской платы;
  • защита от превышения напряжений;
  • защита от снижения напряжений (при перегрузке).

Назначение выводов микросхемы указано в таблице.

Тип Описание Номер Номер Описание Тип
Аналоговый вход Контроль канала +3,3 вольта 1 16 Прямой вход усилителя ошибки Аналоговый вход
Аналоговый вход Контроль канала +5 вольт 2 15 Инверсный вход усилителя ошибки Аналоговый вход
Аналоговый вход Контроль канала +12 вольт 3 14 Выход усилителя ошибки Аналоговый выход
Аналоговый вход Внешняя блокировка 4 13 VCC Питание
Питание GND 5 12 Внешняя блокировка сигнала PG Аналоговый вход
Подключение частотозадающего конденсатора 6 11 Сигнал PG Логический выход
Аналоговый выход Управление транзисторами драйвера 7 10 Конденсатор времени задержки сигнала PG
Аналоговый выход Управление транзисторами драйвера 8 9 Включение микросхемы при низком уровне, выключение при высоком Логический вход

В данном БП применяется микросхема AT2005. Ее не следует путать с широко распространенной AT2005B, имеющей иное расположение выводов. Полным аналогом AT2005 является микросхема LPG899.

Сигнал PG снимается с вывода 11, если напряжения на 1,2,3 выводах находятся в пределах нормы. С материнской платы сигнал Power_ON приходит на вывод 9 — если уровень становится низким, генерация запускается. При таком построении управление контроллером ШИМ не требует дополнительных элементов.

На выход 12 подается напряжение от средней точки драйвера – при исчезновении импульсов микросхема выключается. На вход 16 подается напряжение канала +12 вольт – так сформирована цепь обратной связи для регулирования напряжения. При повышении напряжения на выходе канала, длительность импульсов уменьшается, при снижении – увеличивается. Остальные каналы стабилизируются с помощью дросселя групповой стабилизации – он на схеме своего буквенного обозначения не имеет.

Он представляет собой дроссель с 5 обмотками, намотанными на одном тороидальном сердечнике. Каждая обмотка включается в цепь своего напряжения. Если изменяется напряжение любого канала, это приводит к соответствующему изменению в остальных каналах, включая +12 вольт. Изменение этого напряжения задействует ШИМ-регулятор и все остальные напряжения возвращаются в установленные пределы.

Импульсный трансформатор выполнен с одной вторичной обмоткой с выведенной средней точкой и двумя симметричными отводами, с которых снимается напряжение для каналов +5 и -5 вольт. С крайних выводов снимается напряжение для канала +12 VDC и -12 VDC. Все напряжения выпрямляются двухтактными мостовыми выпрямителями и сглаживаются фильтрами, в которые входит соответствующая обмотка дросселя групповой стабилизации, индивидуальные для каждого канала дроссели L6..L9 и конденсаторы. От канала +12 VDC питается вентилятор охлаждения – стабилизатор собран на транзисторе Q6 и стабилитроне ZD2.

Канал +3,3 VDC выполнен от отдельного выпрямителя на сборке D17 и диодах D14, D15. В схему группового регулирования этот канал не включен.

ATX 350 WP4

Следующий источник питания имеет мощность 350 W. Он построен по похожей схеме, в которой содержится ряд отличий от предыдущего БП:

  • входные цепи содержат два конденсатора защиты от синфазных помех (Cx, Cx2) и терморезистор для ограничения тока заряда конденсаторов;
  • в выходном каскаде инвертора применены намного более мощные транзисторы (с током коллектора 12 А против 3 А у предыдущего узла);
  • генератор дежурного напряжения выполнен на MOSFET.

Более глубокая разница состоит в применении микросхемы для ШИМ и в формировании сигнала PG и обработке команды PS_ON. Для управления широтно-импульсной модуляцией применена микросхема AZ7500BP – полный аналог популярнейшей TL494.

Эта микросхема более универсальна, содержит два усилителя ошибки, что позволяет организовать стабилизацию не только по напряжению, но и по току. TL494 позволяет более гибко управлять ШИМ (за счет настройки времени Dead Time – паузы между импульсами). Но она не содержит супервайзера по наличию и уровню выходных напряжений, и эту задачу надо решать отдельно. В данной схеме для этого применена микросхема LP7510. При наличии трех напряжений — +12 VDC, +5 VDC, +3,3 VDC на выводе 8 появится сигнал PG, который сообщит компьютеру об исправности БП. При получении от материнской платы на выводе 4 сигнала низкого уровня Power_ON, на выводе 3 появится высокий уровень, разрешающий запуск микросхемы TL494 и запуск БП.

Sparkman 400 W

Следующий блок питания – Sparkman 400 W. Его основная особенность – однотактный прямоходовый преобразователь. В качестве силового транзистора применен MOSFET SVD7N60F с током стока до 7 А, который напрямую управляется микросхемой KA3842. На ее вывод 1 через оптрон U38 заведена обратная связь, посредством которой регулируется выходной уровень путем изменения длительности импульсов.

Также применен дроссель групповой стабилизации. Для напряжения +3,3 VDC отдельной обмотки и выпрямителя не предусмотрено, оно формируется от канала +5 вольт с помощью отдельного стабилизатора на MOSFET SD1. Супервайзером напряжений, формирователем сигнала PG служит микросхема WT7510 в стандартном включении.

Схема формирования +5 V Stand By и другие узлы особенностей не имеют. Фильтр высоковольтного выпрямителя выполнен в виде делителя со средней точкой, которая в данном случае нужна для переключения сетевого напряжения с 220 VAC на 110 VAC. Во втором случае выпрямитель из мостового становится удвоителем сетевого напряжения.

Источник

Оцените статью
REMNABOR
Adblock
detector