Lm393 схема включения в блоке питания

Регулятор температуры для управления нагревателем и охладителем (LM393)

Принципиальная схема автоматического устройства для контроля за температурой, которое управляет нагревателем и охладителем. Обычно, термостат поддерживает температуру, управляя нагревателем. Приснижении температуры его включает, при повышении — выключает.

А стабилизация температуры происходит за счет искусственного нагревания и естественного охлаждения (остывания). Но в некоторых случаях, охлаждение естественным образом не происходит, например, из-за жаркой погоды или по другим причинам.

В этом случае для поддержания температуры термостат должен управлять не только нагревателем, но и каким-то охладителем, в качестве которого может работать, например, вентилятор. Здесь приводится описание термостата, который поддерживает температуру не только за счет управления нагревателем, но и за счет управления вентилятором, осуществляющего принудительное охлаждение.

Принципиальная схема

Рис. 1. Принципиальная схема терморегулятора для управления нагревательным и охладительным элементами.

Как уже сказано, температура здесь поддерживается не только обогревателем, но и управлением охладителя, в качестве которого используется вентилятор (это может иметь значение в летнее время, когда температура естественным образом повышается выше допустимого предела). Поэтому в схеме есть два компаратора А1.1 и А1.2. Компаратор А1.1 управляет нагревателем, а компаратор А1.2 — вентилятором.

Напряжение от терморезистора R9 поступает на один вход компаратора, а напряжение опорное, — на другие входы. При этом опорное напряжение формируется делителем на резисторах R2, R5, R7 таким образом, что напряжение на прямом входе А1.1 немного больше напряжения на инверсном входе А1.2. Разница этих напряжений небольшая, и зависит от сопротивления R5.

Когда температура соответствует установленной регулировкой Р1 величине, напряжение на терморезисторе R9 оказывается выше напряжения на инверсном входе А1.2, но ниже напряжения на прямом входе А1.1. При этом выходы обоих компараторов оказываются под высокими логическими уровнями, и ток через светодиоды оптронных реле К1 и К2 не проходит. Реле закрыты и как нагреватель, так и вентилятор выключены.

Когда температура ниже заданной, сопротивление терморезистора R9 больше, напряжение на нем так же больше. Поэтому напряжение на инверсном входе А1.1 больше напряжения на его прямом входе. Значит на выходе А1.1 устанавливается низкий логический уровень. Появляется ток через светодиод оптореле К1.

Реле К1 открывается и подает питание на нагреватель. Если температура выше заданной сопротивление терморезистора R9 ниже, напряжение на нем так же ниже. Поэтому напряжение на прямом входе А1.2 меньше напряжения на его инверсном входе. Значит на выходе А1.2 устанавливается низкий логический уровень.

Появляется ток через светодиод оптореле К2, оно открывается и подает питание на вентилятор. Вот таким образом работает система поддержания температуры.

Гальванически, низковольтная схема полностью развязана с электросетью. Управление нагрузками осуществляется посредством оптической связи (через оптореле), а питание поступает через трансформатор Т1. Поэтому в случае попадания на органы управления воды или прикосновения к ним поражение током исключается, так как они не находятся под потенциалом электросети.

Детали и конструкция

Источник питания выполнен на трансформаторе Т1 типа ТВК100Л. Это выходной трансформатор кадровой развертки от старого лампового черно-белого телевизора. Вместо него можно использовать любой маломощный силовой трансформатор, на вторичной обмотке которого есть переменное напряжение 7-10V при максимальном токе не ниже 100mA. Например, использовать трансформатор от какого-то миниатюрного сетевого источника питания, например, от сетевого адаптера телевизионной игровой приставки или компьютерной периферии, или же намотать его самостоятельно.

Выпрямительный мост КЦ402 можно заменить любым маломощным выпрямительным мостом или собрать мост на четырех диодах, типа КД209, КД105, 1 N4004 или других. Терморезистор ММТ номинальным сопротивлением 10 кОм при температуре +20°С.

Можно использовать терморезистор и другого номинального сопротивления, но при этом нужно учесть то, что номинальное сопротивление переменного резистора R1 должно быть такого же сопротивления, а стартовое сопротивление R3 выбрать в два раза ниже. То есть, если R9 — 20 кОм при температуре +20°С, то Р1 — 20 кОм, а R3 — 10 кОм. Затем, величина R3 уточняется при налаживании (при установке пределов регулировки температуры).

В данной схеме используется микросхема LM393 содержащая два компаратора. В принципе можно использовать практически любые другие компараторы, например, К554САЗ.

Кроме того, можно использовать операционные усилители, включенные в режиме компаратора, но в этом случае может потребоваться усиление выходов операционных усилителей, чтобы они могли работать на светодиоды оптореле. Сделать это можно с помощью транзисторных ключей, но этом случае потребуется у каждого из компараторов поменять местами прямой и инверсный входы, так как теперь включаться нагрузки будут не логическими нулями, а логическими единицами.

Выходные каскады на оптореле 5П19ТМ-20-6 можно выполнить на другой элементной базе, например, как в Л1. Делать выходы по схеме без опторазвязки не рекомендую, так как в этом случае датчики и органы управления оказываются под потенциалом сети. При налаживании можно пользоваться емкостью с водой, нагреваемой на электроплите, и каким-то достаточно точным образцовым термометром.

Желательно чтобы переменный резистор был группы «А», то есть, с линейным законом изменения сопротивления. Применение «логарифмического» резистора (как в регуляторах громкости) сильно затруднит градуировку шкалы.

Литература: 1 — Лыжин Р. Универсальный автомат огородника — любителя. РК-2010-12.

Источник

Lm393 схема включения в блоке питания

продаётся раскрученный сайт недорого обращаться в личку

Я всегда жаловался на зарядные устройства, когда мне перед уходом нужно было что-то быстро зарядить. Этот проект упростил задачу, так как само устройство питается от USB-порта ноутбука, и способно зарядить пару вышеупомянутых батареек.
Любой USB-порт может отдать 500мА при 5В. Но USB-устройства стандартно потребляют не более 100мА, поскольку порт имеет запас, это делает его идеальным источником энергии.
Есть и коммерческие зарядные устройства такого типа, но каждое из них имеет свои недостатки:
1) USB Cell это NiMH AA батарейка, ёмкостью 1300mAh со съемным верхом, что позволяет ей быть подключенной непосредственно к порту USB. Отдельное зарядное не требуется. К сожалению, емкость является очень маленькой (большинство NiMH AA батареек имеют ёмкость 2500mAh), и каждая требует свой собственный порт.
2) Существует два ЗУ на USB батарейках АА типа, продаются под разными названиями, но они заряжают на очень низких скоростях в 100 мА. Дистрибьютор называет их «овернайт зарядное», при такой скорости заряда батарейка ёмкостью 2500мА будет заряжаться около 40 часов.
Зарядное устройство в этом проекте предназначено для зарядки двух АА NiMH или NiCd батареек любой ёмкости при токе около 470mA. Оно будет заряжать 700mAh NiCd батарейку около 1,5 часов, 1500mAh NiMH около 3,5 часов, и 2500mAh NiMH около 5,5 часов. Зарядное устройство включает средство автоматической зарядки, отключение схемы в зависимости от температуры, сами батарейки можно оставить в зарядном устройстве на неопределенный срок после отключения.

Технические условия
Это зарядное устройство имеет следующие технические характеристики:

Размер: 3.8 «Д х 1.2» Ш х 0,7 «В (9.7cm х 3.0cm х 1,5 см).
Аккумуляторы: Два, А.А. размера, NiMH или NiCd типа.
Зарядный ток: 470mA
Зарядка методом терминации: Температура батареи (33 ° С)
Tок подзарядки: 10 мА
Источник питания: настольный компьютер, ноутбук или USB-концентратор.
Условия эксплуатации: -15 ° С до 25 ° С (59 ° F до 77 ° F)

Схема
Сердце этого зарядного устройства Z1A, одна половина LM393-двойного компаратора напряжения. Выход (контакт 1) может быть в одном из двух состояний, высоком или низком. Во время зарядки, выход нагружен на транзистор Q1 и подает на него через резистор R5 около 5.2мА. Q1 имеет бета-около 90, так что к аккумуляторам будет доходить около 470mA зарядного тока.
Во время зарядки, R1, R2 и R4 образуют трехсторонний делитель напряжения, который дает 1,26В на не инвертирующий вход Z1A (контакт 3, Vref).

TR1 представляет собой термистор, что находится в прямом контакте с аккумулятором. Он имеет сопротивление 10 кОм при 25 ° C (77 ° F), которое обратно пропорционально температуре примерно на 3,7% за каждые 1С ° (1.8F °). R3 и TR1 образуют делитель напряжения, значение которого подается на инвертирующий вход (контакт 2, Vtmp). При температуре 20 ° C (68 ° F), TR1 имеет сопротивление 12kΩ, на входе Vtmp при этом 1.76V. По мере повышения температуры батареек, устойчивость TR1 падает. При 33 ° С (91 ° F), сопротивление будет около 7.4kΩ, на Vtmp при этом 1,26В, что соответствует напряжению Vref.

Когда температура поднимается выше 33 ° С, Vtmp станет меньше Vref , а выход Z1А будет высоким и откроет коллектор. Таким образом, ток, протекающий через R5 значительно снизится, так как он теперь ограничен R1, R2 и R4. В результате ток, протекающий через Q1 и батареи уменьшается до 10 мА.

Кроме того, поскольку R4 теперь подключен к +5 В через R5 и Q1, вместо того, чтобы давать 0.26V на Z1A, напряжения Vref изменится примерно до 2.37V. Это гарантирует, что, когда температура элемента падает, зарядное устройство не включится. Для того чтобы достичь Vtmp 2.37V, сопротивление TR1 должно было бы составить около 20 кОм, что соответствует температуре около 6 ° C (43 ° F), которая недопустима в комнате.

Z1B является другим компаратором LM393, и если внимательно посмотреть на схему, то он выполняет то же сравнение, что и Z1A. Это приводит в действие индикатор, обозначающий, что зарядка продолжается. R6 ограничивает ток светодиода до 10 мА. Запустив LED от собственного компаратора (который находится в чипе, используете эго или нет), текущий индикатор не оказывает никакого влияния на Vref.

Наконец, C1 используется, чтобы гарантировать, что зарядка начинается, когда пара батареек вставлена. При отсутствии батареек устройство отключено. Как только вторая из двух вставляется, положительная сторона С1 подключена к напряжению батарей (около 2,4). Через несколько секунд потенциалы на конденсаторе выравниваются, и он больше не влияет на схему.

Конструкция
Схемy лучше собрать на печатной плате.
Начните с установки всех резисторов и конденсатора. Резисторы должны быть установлены в горизонтальном положении. Установите LED1, чтобы отрицательный вывод был подключён к контакту 7 Z1B.
Установите Z1 рядом, гарантируя, что контакт 1 (обозначается маленькой точкой на одном углу IC) ориентирован, как показано на схеме размещения. Если хотите, используйте разъем для Z1.

Транзистор Q1 установите на небольшом радиаторе. Согните контакты на 90 ° только там, где они начинают сужаться. Не сгибайте их слишком резко, они могут сломаться.
Далее установите держатель батареек и приклейте его к плате. Затем закрепите термистор.
Последний шаг-подсоединение USB-кабеля, его можно либо купить, либо отрезать от старой мышки. Не попутайте распиновку проводов.

Тестирование
Перед подключением зарядного устройства к источнику питания, проверьте тщательно вашу работу. Убедитесь, что все компоненты правильно ориентированы (в частности, Q1, LED1, Z1, и держатель батареи).
Для начальных испытаний, я предлагаю вам использовать активный USB-концентратор. Используя концентратор, вы убедитесь, что зарядное устройство не получает питание от компьютера, так как дефект в зарядном устройстве может привести к повреждению источника питания. Кроме того, можно использовать регулируемый источник питания 5В, временно подключенный к +5 В и GND на печатной плате.

При подаче напряжения, проверьте, что индикатор не горит. Если он включен, использовать 330Ω резистор чтобы закоротить TR1 на мгновение. Если светодиод не гаснет, что-то не так.

С выключенным светодиодом, измерите напряжение между GND и Vref (контакт 3 Z1). Оно должно быть примерно 2.37V. Оно может быть немного больше или меньше в зависимости от конкретного напряжения и значения резистора. Также проверьте напряжение на Vtmp (контакт 2). При комнатной температуре, оно должно быть в диапазоне от 1.60V до 1,85, в зависимости от температуры.

Теперь вставьте пару одинаковых А.А. NiMH батареек, предпочтительно те, которые частично или полностью не разрядились. Как только вы вставите вторую батарейку, светодиод должен загореться. Измерьте напряжение Vref снова, оно сейчас должно быть около 1,26. Vtmp также может быть изменено немного, из-за падения напряжения питания, вызванного нагрузочной способностью блока питания.

Зарядное устройство в настоящее время заряжает и напряжение на клеммах аккумуляторов увеличится через некоторое время. Когда ёмкость достигает около 75 %, скорость заряда увеличивается снова. Наконец, когда батареи достигают 100 % заряда, напряжение начнет снижаться. От 15 до 20 минут спустя, зарядное устройство следует отключить.

Стоит также измерить ток заряда.
Если измеренный ток, I, слишком высокий или слишком низкий, замените R5 другим значением согласно следующей формуле:

R5 = 1,6хI
Используйте ближайшее стандартное значение. Например, если ток 510mA, замените R5 на 820Ω. Если измеренный ток был 420мА, используйте 680Ω резистор.

Корпус
Пока ЗУ используется без него, но в будущем хочу сделать для него пластиковый корпус.
Использование зарядного устройства
Использовать зарядное устройство легко. Просто подключите его к порту USB и вставьте две батарейки, которые нужно заряжать. Когда индикатор гаснет, зарядка завершена.
Так же батарейки должны бить одного типа и ёмкости, иначе одна зарядится больше, а другая меньше из-за отключения ЗУ при 33 °C.
В общем, если две клетки используются вместе в одном устройстве (цифровая камера, GPS и т.д.), то они будут оставаться в синхронизации, и могут быть заряжены вместе.

По завершении зарядки, зарядное устройство переключится на непрерывную подзарядку током 10мА. Этого значения достаточно, чтобы преодолеть естественный уровень саморазряда батарей, но оно достаточно низкое, что бы их можно было оставлять в зарядном устройстве на неопределенный срок. Тем не менее, не оставляйте их в зарядном устройстве, если оно не подключено к питанию USB порта.

Зарядка AAA батареек.
Если пружины в держателе батареи имеют достаточную длину, зарядное устройство может быть также использовано для зарядки пары батареек типа AAA. Тем не менее, в этом случае необходимо вставить прокладки между клетками и по бокам отсека, чтобы батарейки оставались в контакте с термистором. Только заряжать можно современные батарейки ААА, имеющие емкость 700mAh или больше.

Список деталей
Part Description
R1 56kΩ ¼W, 5% resistor
R2 27kΩ ¼W, 5% resistor
R3 22kΩ ¼W, 5% resistor
R4 47kΩ ¼W, 5% resistor
R5 750Ω ¼W, 5% resistor
R6 220Ω ¼W, resistor
TR1 10kΩ @ 25°C thermistor, approx. 3.7%/C° NTC
Radio Shack #271-110 (discontinued†)
C1 0.1µF 10V capacitor
Q1 TIP32C PNP transistor, TO-220 case
Z1 LM393 dual voltage comparator IC, DIP
LED1 Red, green, or yellow LED, 10mA
Other 2-cell AA battery holder
USB cable
Small heatsink

Источник

Оцените статью
REMNABOR
Adblock
detector