Power supply блок питания 400w схема

Принципиальные Схемы Atx

Аналогичная ситуация возникает в условиях аварийной эксплуатации блока питания, связанной с короткими замыканиями в нагрузке, контроль которых осуществляется специальной схемой контроля. Вывод 1 ИМС является входом схемы сравнения.


Сигнал проходит через резистор R23, транзистор Q 6 и операционный усилитель IC 2.

Как только вы приступите к ремонту убедитесь, что все контакты и радио компоненты визуально в порядке, силовые шнуры не повреждены, предохранитель и выключатель исправен, коротких замыканий на землю нет.
Ремонт блока питания бп atx дежурка

Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления; Входные электролиты обозначены красным тестирование ключевых силовых транзисторов.

Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ; Проверка выходных диодных сборок диоды шоттки при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность — КЗ; Отмеченные на плате диодные сборки проверка выходных конденсаторов электролитического типа.

Резистор R67 — нагрузка делителя. Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения.

При этом через диод D5, подключенный к этой обмотке, заряжается конденсатор С7, и происходит намагничивание трансформатора. Проверить наличие на контакте PS-ON потенциала корпуса нуля , исправность микросхемы U4 и элементов ее обвязки.

Отсутствие вращения вентилятора. Последний отсекает пульсации и состоит из группы дросселя и конденсаторов.

Обзор и ремонт блока питания FSP ATX 350PAF

Отзывы о сервисе

Мануалы Справочник Программы Радиосамоделки Медтехника Библиотека Схема блока питания для компьютера Здесь вы можете скачать довольно приличный сборник принципиальных схем компьютерных блоков питания АТХ и уже устаревших источников АТ, узнаете как проверить компьютерный источник, получите дельные советы по его ремонту и возможные варианты модернизации в нужные радиолюбительские конструкции. Сергеев Б. Фильтр состоит из группы конденсаторов и дросселя. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций.

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. С задержкой в 0,

Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Чаще всего при поломке компьютерного блока питания, в системнике отсутствуют признаки жизни, не горит светодиодная индикация, нет звуковых сигналов, не крутятся вентиляторы.

Но если осуществлять оперативное управление этими параметрами, например с помощью контроллера с функцией стабилизатора, то показанная выше структурная схема будет вполне пригодной для использования в компьютерной техники.

Нагрузка источника питания — схема терморегулирования. Сергеев Б.

Транзисторы Q 1 и Q 2 открываются противофазно на равные временные интервалы t1 и t2 рис. В источниках питания для конструктива АТХ в дальнейшем — источник изменен разъем для подключения питания к системной плате.

При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор методика такая же, как при проверке диодов. Структурная схема блока питания компьютера Схема блока питания компьютера кликните для увеличения.
Блок питания АТХ пособие по ремонту часть1

Структурная схема

Установка компьютерного блока питания в корпус системного блока Для этого засовываете его в верхнюю часть системного блока, и затем фиксируете тремя или четырьмя винтами к тыловой панели системного блока.

К ним относятся двухзвенный заградительный фильтр сетевых помех, низкочастотный высоковольтный выпрямитель с фильтром, основной и вспомогательный импульсные преобразователи, высокочастотные выпрямители, монитор выходных напряжений, элементы защиты и охлаждения. В случае их наличия заменить микросхему U4.

Мюллер С. Резисторы R2, R3 — элементы цепи разряда конденсаторов С1, С2 при выключении питания.

Положительная обратная связь обеспечивается дополнительной обмоткой, расположенной на магнитопроводе трансформатора ТЗ. Временные диаграммы коммутационных процессов переключения силовых транзисторов Q 1 и Q 2 Управление базовыми цепями транзисторов Q1 и Q 2 осуществляется через ускоряющие цепочки D 3, R 7, С9, R 5 и D 4, R 8, С10, R 6, которые форсируют прямые и обратные токи баз Q 1 и Q 2 на этапах их включения и выключения. Стабилизация этого напряжения осуществляется микросхемами U1, U2.

Как правило, их неисправность может быть обнаружена путем визуального осмотра. Уровень выходных напряжений источника устанавливается потенциометром VR 2. ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности КМ. Неисправности компьютерного блока питания и способы их диагностирования и ремонта Приступая к поиску неисправности рекомендуется ознакомится со схемой компьютерного БП.


В момент подачи питания начинает развиваться блокинг-процесс, и через рабочую обмотку трансформатора Т1 начинает протекать ток. Кучеров Д. Методика проверки инструкция После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов потемнение, изменившийся цвет, нарушение целостности. Структурная схема источника рис. В аварийном режиме функционирования увеличивается падение напряжения на резисторе R

Согласование маломощных выходных сигналов логических элементов УУ с входами силовых транзисторов выполняется усилителями импульсов УИ через трансформатор Т2, который обеспечивает гальваническую развязку. На некоторых моделях возможно встретить сразу два вентилятора. С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. В источнике также имеются цепи защиты от короткого замыкания в каналах выходного напряжения. Напряжение -5 В формируется с помощью диодов D27,

Питание ВПр осуществляекч от сетевого выпрями теля через резистор R 9. Возвратные диоды D 1 и D 2 ограничивают напряжения на коллекторах транзисторов Q 1 и Q 2, обеспечивая их безопасную paботу в инверсном режиме при возврате реактивной энергии, накопленной в нагрузке и трансформаторе, в систему электроснабжения через открытый транзистор.
Лабораторный БП из компьютерного блока питания ATX

Блок питания ATX-400W — принципиальная схема

Конденсаторы С1, С2 образуют фильтр низкочастотной сети.

Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании. Такая упрощенная схема БП с использованием контроллера широтно-импульсной модуляции показана на следующем рисунке.

Диоды D13, D14 предназначены для рассеивания магнитной энергии, накопленной полуобмотками трансформатора Т2. В случае исправности элементов обвязки заменить U4. Магнитный поток, создаваемый этим током, наводит ЭДС в обмотке положительной обратной связи.

При этом в трансформаторе Т1 накапливается больше электромагнитной энергии, отдаваемой в нагрузку, вследствие чего выходное напряжение повышается до номинального значения. Структурная схема источника рис. Конструктивные особенности Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. Значительно реже происходит отказ вентилятора, но это также приводит к печальным последствиям: от перегрева выгорают дроссели L1, L 2.

Во вторичных обмотках блока питания компьютера, кроме диодных сборок на радиаторах задействованы дроссели. Принципиальные схемы блоков питания ATX. Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.

Этой величины достаточно для запирания транзистора Q6. Резистор R47 и конденсатор С29 — элементы частотной коррекции усилителя.

Распиновка основного коннектора БП

Проверить исправность цепи стабилизации U1, U2, неисправный элемент заменяется. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. Выходной сигнал инвертора подается через токовый датчик Т4 на первичную обмотку силового трансформатора Т1. На неинвертирующий вход усилителя ошибки 1 выв. При протекании тока через первичную обмотку ТЗ происходит процесс накопления энергии трансформатором, передача этой энергии во вторичные цепи источника питания и заряд конденсаторов С1, С2.

Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной. В отличие от линейных, импульсные блоки питания компактнее и обладают высоким КПД и меньшими тепловыми потерями. С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста; Дисковый термистор обозначен красным тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. Обзор схем источников питания Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь.
Как работает ATX

Источник

Схема блока питания компьютера — полное описание с примерами

На рынке компонентов для персональных компьютеров (включая блоки питания для ПК и серверов) присутствует множество фирм, начиная от сверхкорпораций до малоизвестных мелких производителей. Несмотря на такое разнообразие, большинство БП строятся по схожему принципу, хотя и на разной элементной базе. Зная эти принципы, можно разобраться в работе любого источника питающих напряжений.

Устройство и общая структурная схема

Источник питающих напряжений для ПК строится по обычной по традиционной схемотехнике, характерной для импульсных БП со стабилизацией напряжения. Но схема блока питания компьютера стандарта ATX имеет дополнительные специфические узлы, позволяющие управлять модулем сигналами от материнской платы. Далее все блоки рассмотрены подробно.

Входные цепи

Входные цепи защищают сеть от помех, генерируемых блоком питания во время работы. Помимо фильтра они содержат элементы защиты БП от скачков напряжения и замыканий внутри блока.

Типовая схема содержит плавкий предохранитель, сгорающий при повышении потребляемого тока сверх номинала, а также варистор. В обычном режиме его сопротивление велико и он не участвует в работе узла. При выбросах в сети его сопротивление уменьшается, ток через него увеличивается, тем самым он ускоряет перегорание плавкой вставки. Также входные цепи содержат элементы фильтрации:

  • от синфазных помех (синфазный дроссель и конденсаторы Cy);
  • от дифференциальных помех (конденсаторы Cx и Cx1).

Реальные блоки питания могут содержать не все указанные элементы и наоборот – могут содержать дополнительные (два синфазных дросселя, терморезистор для ограничения тока заряда конденсаторов выпрямителя и т.п.).

Высоковольтный выпрямитель

Обычно выполняется по мостовой двухполупериодной схеме. Сглаживающие конденсаторы включены последовательно. Назначение такого включения двойное:

  • создание средней точки для питания полумостового инвертора;
  • создание схемы удвоения напряжения при питании сети от 110 вольт.

Параллельно конденсаторам часто устанавливают резисторы для быстрого разряда емкостей при отключении питания, а также для выравнивания напряжения средней точки – оно может отличаться от половины Uпит из-за разного тока утечки оксидных конденсаторов. Для защиты от перенапряжений параллельно конденсаторам могут устанавливаться варисторы или стабилитроны.

Инвертор

Инвертор служит для преобразования выпрямленного сетевого напряжения в импульсное. Чаще всего они выполняются по двухтактной полумостовой схеме. Полумост является компромиссом между пушпульным и мостовым преобразователем – он свободен от выбросов напряжения, влекущих повышенные требования к параметрам транзисторов, для него применяются трансформаторы без средней точки в первичной обмотке и в нем используется всего два транзистора. Но к первичной обмотке прикладывается только половина напряжения питания (формируется за счет средней точки сглаживающего фильтра).

В некоторых источниках используются и однотактные прямоходовые инверторы (у обратноходовых с ростом мощности значительно растут габариты и масса импульсных трансформаторов).

Схема управления ключами

В стабилизированных источниках питания ключи управляются методом широтно-импульсной модуляции. На управляющие электроды транзисторов подаются импульсы, следующие с одинаковой частотой, но с регулируемой длительностью. Чтобы увеличить напряжение, длительность импульсов также увеличивается. Чтобы снизить выходной уровень, транзисторы открываются на меньшее время. Для организации ШИМ обычно применяются микросхемы. У них «на борту» имеется полный набор узлов от генератора и усилителя ошибки до выходных транзисторных ключей (впрочем, достаточно маломощных, чтобы обойтись без внешних силовых транзисторов).

Вторичные цепи

Напряжение с первичной обмотки импульсного трансформатора преобразуется в пониженное импульсное на вторичных обмотках, а далее выпрямляется и сглаживается.

Обмотки обычно выполняются с отводом от средней точки. Выпрямители при этом исполняются по мостовой схеме. Наиболее энергоемкие каналы (+5 и +12 вольт) запитываются от верхней части мостов (для них устанавливаются мощные вентили или сборки), а отрицательные напряжения снимаются с нижних диодов (они менее мощные). Дальше выпрямленные напряжения сглаживаются с помощью LC-цепей (они включают в себя и обмотки дросселя групповой стабилизации). Для напряжения +3,3 VDC обычно применяется отдельный выпрямитель, либо оно формируется из канала +5 VDC с помощью дополнительного линейного стабилизатора.

Схема дежурного напряжения

Напряжение Stand By нужно для питания участка схемы материнской платы ПК, отвечающего за старт компьютера. Также оно используется для питания микросхемы ШИМ и драйвера инвертора до того, как БП запущен. Обычно узел выполняется в виде отдельного генератора, питающегося от высоковольтного выпрямителя.

Формирование сигнала PG и обработка сигнала PS_ON

За эту задачу отвечают отдельные участки схемы. При наличии всех (или части) питающих напряжений формируется сигнал PG (Power Good), сигнализирующий компьютеру об исправности блока питания. При получении от материнской платы сигнала PS_ON, запускается генератор контроллера ШИМ. У некоторых специализированных микросхем есть отдельные входы для формирования и обработки этих сигналов (LPG899, AT2005B). Также существуют микросхемы-супервайзеры, которые выполняют эти функции и генерируют сигналы управления. В некоторых БП эти задачи возложены на участки схемы на дискретных элементах.

Цепи обратной связи

В большинстве БП для поддержания уровня используется только одно напряжение (обычно, +12 VDC или +5 VDC). Остальные каналы включены в систему групповой стабилизации, влияющие на измеряемое напряжение. Такой принцип не позволяет добиться высокого коэффициента стабилизации, но значительно упрощает построение схемы БП ATX.

Описание схем блоков питания компьютера стандарта ATX

В качестве примеров рассматриваются несколько схем источников питания различной мощности. Схемы подобраны так, чтобы одинаковые функциональные узлы строились на различных элементах.

300-ваттный БП производства JNC computer

В качестве первого примера приведена схема электрическая принципиальная БП SY-300ATX 300W. Входные цепи построены несколько упрощенно. В нем отсутствует конденсатор Cx для защиты от дифференциальных помех. Также нет варистора для защиты от выбросов сетевого напряжения. Полностью выполнена лишь схема защиты от синфазных помех – на дросселе LF1 и конденсаторах CY1 и CY2.

Выпрямитель на сборке RL205 особенностей не имеет, сглаживающий фильтр С1С2 одновременно выполняет функции делителя напряжения. Для выравнивания средней точки и быстрого разряда емкостей при выключении применены резисторы R13, R12 и варисторы V1, V2. От выпрямленного напряжения величиной около 310 вольт работает схема, формирующая дежурное напряжение.

Генератор выполнен на транзисторе Q3, первичные обмотки трансформатора T3 выполняют функцию нагрузки и обратной связи. Нижняя половина вторичной обмотки формирует собственно напряжение Stand By, которое выпрямляется диодом D7, сглаживается фильтром C13L2C14. Для его стабилизации организован еще один контур обратной связи через оптрон U1. Если выходной уровень повышается, свечение светодиода оптрона становится интенсивнее, приемный транзистор открывается, прикрывая транзистор Q4, который уменьшая напряжение на базе Q3, уменьшает время его открытого состояния. С двух обмоток (суммы верхней и нижней половин) снимается питание для микросхемы генератора и предварительного каскада инвертора. Оно выпрямляется диодом D8, сглаживается емкостью C12.

Средняя точка делителя выпрямленного высокого напряжения подключена к одному концу первичной обмотки импульсного трансформатора T3, защищенной от коммутационных выбросов снаббером R16C10. Другой конец первичной обмотки подключен к средней точке полумостового инвертора, образованного транзисторами Q1,Q2. Полумост изолирован от низковольтной части трансформатором T2. Импульсы на вторичных обмотках формируются драйвером на транзисторах Q5, Q6, которые, в свою очередь, попеременно открываются и закрываются под управлением выводов 7 и 8 микросхемы AT2005. Эта микросхема разработана для использования в качестве контроллера ШИМ в компьютерных блоках питания.

Как и любой PWM-контроллер она выполняет функции:

  • формирование импульсов управлениями транзисторами инвертора;
  • регулировка длительности импульсов в целях стабилизации выходных напряжений.

Кроме этого, она выполняет специфические для компьютерных БП задачи:

  • формирование сигнала Power_OK (PG);
  • запуск инвертора при получении сигнала Power_ON от материнской платы;
  • защита от превышения напряжений;
  • защита от снижения напряжений (при перегрузке).

Назначение выводов микросхемы указано в таблице.

Тип Описание Номер Номер Описание Тип
Аналоговый вход Контроль канала +3,3 вольта 1 16 Прямой вход усилителя ошибки Аналоговый вход
Аналоговый вход Контроль канала +5 вольт 2 15 Инверсный вход усилителя ошибки Аналоговый вход
Аналоговый вход Контроль канала +12 вольт 3 14 Выход усилителя ошибки Аналоговый выход
Аналоговый вход Внешняя блокировка 4 13 VCC Питание
Питание GND 5 12 Внешняя блокировка сигнала PG Аналоговый вход
Подключение частотозадающего конденсатора 6 11 Сигнал PG Логический выход
Аналоговый выход Управление транзисторами драйвера 7 10 Конденсатор времени задержки сигнала PG
Аналоговый выход Управление транзисторами драйвера 8 9 Включение микросхемы при низком уровне, выключение при высоком Логический вход

В данном БП применяется микросхема AT2005. Ее не следует путать с широко распространенной AT2005B, имеющей иное расположение выводов. Полным аналогом AT2005 является микросхема LPG899.

Сигнал PG снимается с вывода 11, если напряжения на 1,2,3 выводах находятся в пределах нормы. С материнской платы сигнал Power_ON приходит на вывод 9 — если уровень становится низким, генерация запускается. При таком построении управление контроллером ШИМ не требует дополнительных элементов.

На выход 12 подается напряжение от средней точки драйвера – при исчезновении импульсов микросхема выключается. На вход 16 подается напряжение канала +12 вольт – так сформирована цепь обратной связи для регулирования напряжения. При повышении напряжения на выходе канала, длительность импульсов уменьшается, при снижении – увеличивается. Остальные каналы стабилизируются с помощью дросселя групповой стабилизации – он на схеме своего буквенного обозначения не имеет.

Он представляет собой дроссель с 5 обмотками, намотанными на одном тороидальном сердечнике. Каждая обмотка включается в цепь своего напряжения. Если изменяется напряжение любого канала, это приводит к соответствующему изменению в остальных каналах, включая +12 вольт. Изменение этого напряжения задействует ШИМ-регулятор и все остальные напряжения возвращаются в установленные пределы.

Импульсный трансформатор выполнен с одной вторичной обмоткой с выведенной средней точкой и двумя симметричными отводами, с которых снимается напряжение для каналов +5 и -5 вольт. С крайних выводов снимается напряжение для канала +12 VDC и -12 VDC. Все напряжения выпрямляются двухтактными мостовыми выпрямителями и сглаживаются фильтрами, в которые входит соответствующая обмотка дросселя групповой стабилизации, индивидуальные для каждого канала дроссели L6..L9 и конденсаторы. От канала +12 VDC питается вентилятор охлаждения – стабилизатор собран на транзисторе Q6 и стабилитроне ZD2.

Канал +3,3 VDC выполнен от отдельного выпрямителя на сборке D17 и диодах D14, D15. В схему группового регулирования этот канал не включен.

ATX 350 WP4

Следующий источник питания имеет мощность 350 W. Он построен по похожей схеме, в которой содержится ряд отличий от предыдущего БП:

  • входные цепи содержат два конденсатора защиты от синфазных помех (Cx, Cx2) и терморезистор для ограничения тока заряда конденсаторов;
  • в выходном каскаде инвертора применены намного более мощные транзисторы (с током коллектора 12 А против 3 А у предыдущего узла);
  • генератор дежурного напряжения выполнен на MOSFET.

Более глубокая разница состоит в применении микросхемы для ШИМ и в формировании сигнала PG и обработке команды PS_ON. Для управления широтно-импульсной модуляцией применена микросхема AZ7500BP – полный аналог популярнейшей TL494.

Эта микросхема более универсальна, содержит два усилителя ошибки, что позволяет организовать стабилизацию не только по напряжению, но и по току. TL494 позволяет более гибко управлять ШИМ (за счет настройки времени Dead Time – паузы между импульсами). Но она не содержит супервайзера по наличию и уровню выходных напряжений, и эту задачу надо решать отдельно. В данной схеме для этого применена микросхема LP7510. При наличии трех напряжений — +12 VDC, +5 VDC, +3,3 VDC на выводе 8 появится сигнал PG, который сообщит компьютеру об исправности БП. При получении от материнской платы на выводе 4 сигнала низкого уровня Power_ON, на выводе 3 появится высокий уровень, разрешающий запуск микросхемы TL494 и запуск БП.

Sparkman 400 W

Следующий блок питания – Sparkman 400 W. Его основная особенность – однотактный прямоходовый преобразователь. В качестве силового транзистора применен MOSFET SVD7N60F с током стока до 7 А, который напрямую управляется микросхемой KA3842. На ее вывод 1 через оптрон U38 заведена обратная связь, посредством которой регулируется выходной уровень путем изменения длительности импульсов.

Также применен дроссель групповой стабилизации. Для напряжения +3,3 VDC отдельной обмотки и выпрямителя не предусмотрено, оно формируется от канала +5 вольт с помощью отдельного стабилизатора на MOSFET SD1. Супервайзером напряжений, формирователем сигнала PG служит микросхема WT7510 в стандартном включении.

Схема формирования +5 V Stand By и другие узлы особенностей не имеют. Фильтр высоковольтного выпрямителя выполнен в виде делителя со средней точкой, которая в данном случае нужна для переключения сетевого напряжения с 220 VAC на 110 VAC. Во втором случае выпрямитель из мостового становится удвоителем сетевого напряжения.

Источник

Оцените статью
REMNABOR
Adblock
detector